Blame view
src/gmmbin/gmm-global-init-from-feats.cc
7.48 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
// gmmbin/gmm-global-init-from-feats.cc // Copyright 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/model-common.h" #include "gmm/full-gmm.h" #include "gmm/diag-gmm.h" #include "gmm/mle-full-gmm.h" namespace kaldi { // We initialize the GMM parameters by setting the variance to the global // variance of the features, and the means to distinct randomly chosen frames. void InitGmmFromRandomFrames(const Matrix<BaseFloat> &feats, DiagGmm *gmm) { int32 num_gauss = gmm->NumGauss(), num_frames = feats.NumRows(), dim = feats.NumCols(); KALDI_ASSERT(num_frames >= 10 * num_gauss && "Too few frames to train on"); Vector<double> mean(dim), var(dim); for (int32 i = 0; i < num_frames; i++) { mean.AddVec(1.0 / num_frames, feats.Row(i)); var.AddVec2(1.0 / num_frames, feats.Row(i)); } var.AddVec2(-1.0, mean); if (var.Max() <= 0.0) KALDI_ERR << "Features do not have positive variance " << var; DiagGmmNormal gmm_normal(*gmm); std::set<int32> used_frames; for (int32 g = 0; g < num_gauss; g++) { int32 random_frame = RandInt(0, num_frames - 1); while (used_frames.count(random_frame) != 0) random_frame = RandInt(0, num_frames - 1); used_frames.insert(random_frame); gmm_normal.weights_(g) = 1.0 / num_gauss; gmm_normal.means_.Row(g).CopyFromVec(feats.Row(random_frame)); gmm_normal.vars_.Row(g).CopyFromVec(var); } gmm->CopyFromNormal(gmm_normal); gmm->ComputeGconsts(); } void TrainOneIter(const Matrix<BaseFloat> &feats, const MleDiagGmmOptions &gmm_opts, int32 iter, int32 num_threads, DiagGmm *gmm) { AccumDiagGmm gmm_acc(*gmm, kGmmAll); Vector<BaseFloat> frame_weights(feats.NumRows(), kUndefined); frame_weights.Set(1.0); double tot_like; tot_like = gmm_acc.AccumulateFromDiagMultiThreaded(*gmm, feats, frame_weights, num_threads); KALDI_LOG << "Likelihood per frame on iteration " << iter << " was " << (tot_like / feats.NumRows()) << " over " << feats.NumRows() << " frames."; BaseFloat objf_change, count; MleDiagGmmUpdate(gmm_opts, gmm_acc, kGmmAll, gmm, &objf_change, &count); KALDI_LOG << "Objective-function change on iteration " << iter << " was " << (objf_change / count) << " over " << count << " frames."; } } // namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; const char *usage = "This program initializes a single diagonal GMM and does multiple iterations of " "training from features stored in memory. " "Usage: gmm-global-init-from-feats [options] <feature-rspecifier> <model-out> " "e.g.: gmm-global-init-from-feats scp:train.scp 1.mdl "; ParseOptions po(usage); MleDiagGmmOptions gmm_opts; bool binary = true; int32 num_gauss = 100; int32 num_gauss_init = 0; int32 num_iters = 50; int32 num_frames = 200000; int32 srand_seed = 0; int32 num_threads = 4; po.Register("binary", &binary, "Write output in binary mode"); po.Register("num-gauss", &num_gauss, "Number of Gaussians in the model"); po.Register("num-gauss-init", &num_gauss_init, "Number of Gaussians in " "the model initially (if nonzero and less than num_gauss, " "we'll do mixture splitting)"); po.Register("num-iters", &num_iters, "Number of iterations of training"); po.Register("num-frames", &num_frames, "Number of feature vectors to store in " "memory and train on (randomly chosen from the input features)"); po.Register("srand", &srand_seed, "Seed for random number generator "); po.Register("num-threads", &num_threads, "Number of threads used for " "statistics accumulation"); gmm_opts.Register(&po); po.Read(argc, argv); srand(srand_seed); if (po.NumArgs() != 2) { po.PrintUsage(); exit(1); } std::string feature_rspecifier = po.GetArg(1), model_wxfilename = po.GetArg(2); Matrix<BaseFloat> feats; SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier); KALDI_ASSERT(num_frames > 0); int64 num_read = 0, dim = 0; KALDI_LOG << "Reading features (will keep " << num_frames << " frames.)"; for (; !feature_reader.Done(); feature_reader.Next()) { const Matrix<BaseFloat> &this_feats = feature_reader.Value(); for (int32 t = 0; t < this_feats.NumRows(); t++) { num_read++; if (dim == 0) { dim = this_feats.NumCols(); feats.Resize(num_frames, dim); } else if (this_feats.NumCols() != dim) { KALDI_ERR << "Features have inconsistent dims " << this_feats.NumCols() << " vs. " << dim << " (current utt is) " << feature_reader.Key(); } if (num_read <= num_frames) { feats.Row(num_read - 1).CopyFromVec(this_feats.Row(t)); } else { BaseFloat keep_prob = num_frames / static_cast<BaseFloat>(num_read); if (WithProb(keep_prob)) { // With probability "keep_prob" feats.Row(RandInt(0, num_frames - 1)).CopyFromVec(this_feats.Row(t)); } } } } if (num_read < num_frames) { KALDI_WARN << "Number of frames read " << num_read << " was less than " << "target number " << num_frames << ", using all we read."; feats.Resize(num_read, dim, kCopyData); } else { BaseFloat percent = num_frames * 100.0 / num_read; KALDI_LOG << "Kept " << num_frames << " out of " << num_read << " input frames = " << percent << "%."; } if (num_gauss_init <= 0 || num_gauss_init > num_gauss) num_gauss_init = num_gauss; DiagGmm gmm(num_gauss_init, dim); KALDI_LOG << "Initializing GMM means from random frames to " << num_gauss_init << " Gaussians."; InitGmmFromRandomFrames(feats, &gmm); // we'll increase the #Gaussians by splitting, // till halfway through training. int32 cur_num_gauss = num_gauss_init, gauss_inc = (num_gauss - num_gauss_init) / (num_iters / 2); for (int32 iter = 0; iter < num_iters; iter++) { TrainOneIter(feats, gmm_opts, iter, num_threads, &gmm); int32 next_num_gauss = std::min(num_gauss, cur_num_gauss + gauss_inc); if (next_num_gauss > gmm.NumGauss()) { KALDI_LOG << "Splitting to " << next_num_gauss << " Gaussians."; gmm.Split(next_num_gauss, 0.1); cur_num_gauss = next_num_gauss; } } WriteKaldiObject(gmm, model_wxfilename, binary); KALDI_LOG << "Wrote model to " << model_wxfilename; return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |