gmm-global-init-from-feats.cc
7.48 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// gmmbin/gmm-global-init-from-feats.cc
// Copyright 2013 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/model-common.h"
#include "gmm/full-gmm.h"
#include "gmm/diag-gmm.h"
#include "gmm/mle-full-gmm.h"
namespace kaldi {
// We initialize the GMM parameters by setting the variance to the global
// variance of the features, and the means to distinct randomly chosen frames.
void InitGmmFromRandomFrames(const Matrix<BaseFloat> &feats, DiagGmm *gmm) {
int32 num_gauss = gmm->NumGauss(), num_frames = feats.NumRows(),
dim = feats.NumCols();
KALDI_ASSERT(num_frames >= 10 * num_gauss && "Too few frames to train on");
Vector<double> mean(dim), var(dim);
for (int32 i = 0; i < num_frames; i++) {
mean.AddVec(1.0 / num_frames, feats.Row(i));
var.AddVec2(1.0 / num_frames, feats.Row(i));
}
var.AddVec2(-1.0, mean);
if (var.Max() <= 0.0)
KALDI_ERR << "Features do not have positive variance " << var;
DiagGmmNormal gmm_normal(*gmm);
std::set<int32> used_frames;
for (int32 g = 0; g < num_gauss; g++) {
int32 random_frame = RandInt(0, num_frames - 1);
while (used_frames.count(random_frame) != 0)
random_frame = RandInt(0, num_frames - 1);
used_frames.insert(random_frame);
gmm_normal.weights_(g) = 1.0 / num_gauss;
gmm_normal.means_.Row(g).CopyFromVec(feats.Row(random_frame));
gmm_normal.vars_.Row(g).CopyFromVec(var);
}
gmm->CopyFromNormal(gmm_normal);
gmm->ComputeGconsts();
}
void TrainOneIter(const Matrix<BaseFloat> &feats,
const MleDiagGmmOptions &gmm_opts,
int32 iter,
int32 num_threads,
DiagGmm *gmm) {
AccumDiagGmm gmm_acc(*gmm, kGmmAll);
Vector<BaseFloat> frame_weights(feats.NumRows(), kUndefined);
frame_weights.Set(1.0);
double tot_like;
tot_like = gmm_acc.AccumulateFromDiagMultiThreaded(*gmm, feats, frame_weights,
num_threads);
KALDI_LOG << "Likelihood per frame on iteration " << iter
<< " was " << (tot_like / feats.NumRows()) << " over "
<< feats.NumRows() << " frames.";
BaseFloat objf_change, count;
MleDiagGmmUpdate(gmm_opts, gmm_acc, kGmmAll, gmm, &objf_change, &count);
KALDI_LOG << "Objective-function change on iteration " << iter << " was "
<< (objf_change / count) << " over " << count << " frames.";
}
} // namespace kaldi
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
const char *usage =
"This program initializes a single diagonal GMM and does multiple iterations of\n"
"training from features stored in memory.\n"
"Usage: gmm-global-init-from-feats [options] <feature-rspecifier> <model-out>\n"
"e.g.: gmm-global-init-from-feats scp:train.scp 1.mdl\n";
ParseOptions po(usage);
MleDiagGmmOptions gmm_opts;
bool binary = true;
int32 num_gauss = 100;
int32 num_gauss_init = 0;
int32 num_iters = 50;
int32 num_frames = 200000;
int32 srand_seed = 0;
int32 num_threads = 4;
po.Register("binary", &binary, "Write output in binary mode");
po.Register("num-gauss", &num_gauss, "Number of Gaussians in the model");
po.Register("num-gauss-init", &num_gauss_init, "Number of Gaussians in "
"the model initially (if nonzero and less than num_gauss, "
"we'll do mixture splitting)");
po.Register("num-iters", &num_iters, "Number of iterations of training");
po.Register("num-frames", &num_frames, "Number of feature vectors to store in "
"memory and train on (randomly chosen from the input features)");
po.Register("srand", &srand_seed, "Seed for random number generator ");
po.Register("num-threads", &num_threads, "Number of threads used for "
"statistics accumulation");
gmm_opts.Register(&po);
po.Read(argc, argv);
srand(srand_seed);
if (po.NumArgs() != 2) {
po.PrintUsage();
exit(1);
}
std::string feature_rspecifier = po.GetArg(1),
model_wxfilename = po.GetArg(2);
Matrix<BaseFloat> feats;
SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
KALDI_ASSERT(num_frames > 0);
int64 num_read = 0, dim = 0;
KALDI_LOG << "Reading features (will keep " << num_frames << " frames.)";
for (; !feature_reader.Done(); feature_reader.Next()) {
const Matrix<BaseFloat> &this_feats = feature_reader.Value();
for (int32 t = 0; t < this_feats.NumRows(); t++) {
num_read++;
if (dim == 0) {
dim = this_feats.NumCols();
feats.Resize(num_frames, dim);
} else if (this_feats.NumCols() != dim) {
KALDI_ERR << "Features have inconsistent dims "
<< this_feats.NumCols() << " vs. " << dim
<< " (current utt is) " << feature_reader.Key();
}
if (num_read <= num_frames) {
feats.Row(num_read - 1).CopyFromVec(this_feats.Row(t));
} else {
BaseFloat keep_prob = num_frames / static_cast<BaseFloat>(num_read);
if (WithProb(keep_prob)) { // With probability "keep_prob"
feats.Row(RandInt(0, num_frames - 1)).CopyFromVec(this_feats.Row(t));
}
}
}
}
if (num_read < num_frames) {
KALDI_WARN << "Number of frames read " << num_read << " was less than "
<< "target number " << num_frames << ", using all we read.";
feats.Resize(num_read, dim, kCopyData);
} else {
BaseFloat percent = num_frames * 100.0 / num_read;
KALDI_LOG << "Kept " << num_frames << " out of " << num_read
<< " input frames = " << percent << "%.";
}
if (num_gauss_init <= 0 || num_gauss_init > num_gauss)
num_gauss_init = num_gauss;
DiagGmm gmm(num_gauss_init, dim);
KALDI_LOG << "Initializing GMM means from random frames to "
<< num_gauss_init << " Gaussians.";
InitGmmFromRandomFrames(feats, &gmm);
// we'll increase the #Gaussians by splitting,
// till halfway through training.
int32 cur_num_gauss = num_gauss_init,
gauss_inc = (num_gauss - num_gauss_init) / (num_iters / 2);
for (int32 iter = 0; iter < num_iters; iter++) {
TrainOneIter(feats, gmm_opts, iter, num_threads, &gmm);
int32 next_num_gauss = std::min(num_gauss, cur_num_gauss + gauss_inc);
if (next_num_gauss > gmm.NumGauss()) {
KALDI_LOG << "Splitting to " << next_num_gauss << " Gaussians.";
gmm.Split(next_num_gauss, 0.1);
cur_num_gauss = next_num_gauss;
}
}
WriteKaldiObject(gmm, model_wxfilename, binary);
KALDI_LOG << "Wrote model to " << model_wxfilename;
return 0;
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}