Blame view
src/gmmbin/gmm-train-lvtln-special.cc
12.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
// gmmbin/gmm-train-lvtln-special.cc // Copyright 2009-2011 Microsoft Corporation // Copyright 2014 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "transform/lvtln.h" #include "hmm/posterior.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using kaldi::int32; const char *usage = "Set one of the transforms in lvtln to the minimum-squared-error solution " "to mapping feats-untransformed to feats-transformed; posteriors may " "optionally be used to downweight/remove silence. " "Usage: gmm-train-lvtln-special [options] class-index <lvtln-in> <lvtln-out> " " <feats-untransformed-rspecifier> <feats-transformed-rspecifier> [<posteriors-rspecifier>] " "e.g.: " " gmm-train-lvtln-special 5 5.lvtln 6.lvtln scp:train.scp scp:train_warp095.scp ark:nosil.post "; BaseFloat warp = -1.0; bool binary = true; bool normalize_var = false; bool normalize_covar = false; std::string weights_rspecifier; ParseOptions po(usage); po.Register("binary", &binary, "Write output in binary mode"); po.Register("warp", &warp, "If supplied, can be used to set warp factor" "for this transform"); po.Register("normalize-var", &normalize_var, "Normalize diagonal of variance " "to be the same before and after transform."); po.Register("normalize-covar", &normalize_covar, "Normalize (matrix-valued) " "covariance to be the same before and after transform."); po.Register("weights-in", &weights_rspecifier, "Can be used to take posteriors as an scp or ark file of weights " "instead of giving <posteriors-rspecfier>"); po.Read(argc, argv); if (po.NumArgs() < 5 || po.NumArgs() > 6) { po.PrintUsage(); exit(1); } std::string class_idx_str = po.GetArg(1); int32 class_idx; if (!ConvertStringToInteger(class_idx_str, &class_idx)) KALDI_ERR << "Expected integer first argument: got " << class_idx_str; std::string lvtln_rxfilename = po.GetArg(2), lvtln_wxfilename = po.GetArg(3), feats_orig_rspecifier = po.GetArg(4), feats_transformed_rspecifier = po.GetArg(5), posteriors_rspecifier = po.GetOptArg(6); // Get lvtln object. LinearVtln lvtln; ReadKaldiObject(lvtln_rxfilename, &lvtln); int32 dim = lvtln.Dim(); // feature dimension [we hope!]. if (!normalize_covar) { // Below is the computation if we are not normalizing the full covariance. // Ignoring weighting (which is a straightforward extension), the problem is this: // we have original features x(t) and transformed features y(t) [both x(t) and y(t) // are vectors of size D]. We are training an affine transform to minimize the sum-squared // error between A x(t) + b and y(t). Let x(t)^+ be x(t) with a 1 appended, and let // w_i be the i'th row of the matrix [ A; b ], as in CMLLR. // We are minimizeing // \sum_{t = 1}^T \sum_{i = 1}^D (w_i^T x(t)^+ - y_i(t))^2, // We can express this in terms of sufficient statistics as: // \sum_{i = 1}^D w_i^T Q w_i - 2 w_i^T l_i + c_i, // where // Q_i = \sum_{t = 1}^T x(t)^+ x(t)^+^T // l_i = \sum_{t = 1}^T x(t)^+ y_i(t) // c_i = \sum_{t = 1}^T y_i(t)^2 // The solution for row i is: w_i = Q^{-1} l_i // and the sum-square error for index i is: // w_i^T Q w_i - 2 w_i^T l_i + c_i . // Note that for lvtln purposes we throw away the "offset" element (i.e. the last // element of each row w_i). // Declare statistics we use to estimate transform. SpMatrix<double> Q(dim+1); // quadratic stats == outer product of x^+. Matrix<double> l(dim, dim+1); // i'th row of l is l_i Vector<double> c(dim); double beta = 0.0; Vector<double> sum_xplus(dim+1); // sum of x_i^+ Vector<double> sumsq_x(dim); // sumsq of x_i Vector<double> sumsq_diff(dim); // sum of x_i-y_i SequentialBaseFloatMatrixReader x_reader(feats_orig_rspecifier); RandomAccessBaseFloatMatrixReader y_reader(feats_transformed_rspecifier); RandomAccessPosteriorReader post_reader(posteriors_rspecifier); RandomAccessBaseFloatVectorReader weights_reader(weights_rspecifier); for (; !x_reader.Done(); x_reader.Next()) { std::string utt = x_reader.Key(); if (!y_reader.HasKey(utt)) { KALDI_WARN << "No transformed features for key " << utt; continue; } const Matrix<BaseFloat> &x_feats = x_reader.Value(); const Matrix<BaseFloat> &y_feats = y_reader.Value(utt); if (x_feats.NumRows() != y_feats.NumRows() || x_feats.NumCols() != y_feats.NumCols() || x_feats.NumCols() != dim) { KALDI_ERR << "Number of rows and/or columns differs in features, or features have different dim from lvtln object"; } Vector<BaseFloat> weights(x_feats.NumRows()); if (weights_rspecifier == "" && posteriors_rspecifier != "") { if (!post_reader.HasKey(utt)) { KALDI_WARN << "No posteriors for utterance " << utt; continue; } const Posterior &post = post_reader.Value(utt); if (static_cast<int32>(post.size()) != x_feats.NumRows()) KALDI_ERR << "Mismatch in size of posterior"; for (size_t i = 0; i < post.size(); i++) for (size_t j = 0; j < post[i].size(); j++) weights(i) += post[i][j].second; } else if (weights_rspecifier != "") { if (!weights_reader.HasKey(utt)) { KALDI_WARN << "No weights for utterance " << utt; continue; } weights.CopyFromVec(weights_reader.Value(utt)); } else { weights.Add(1.0); } // Now get stats. for (int32 i = 0; i < x_feats.NumRows(); i++) { BaseFloat weight = weights(i); SubVector<BaseFloat> x_row(x_feats, i); SubVector<BaseFloat> y_row(y_feats, i); Vector<double> xplus_row_dbl(dim+1); for (int32 j = 0; j < dim; j++) xplus_row_dbl(j) = x_row(j); xplus_row_dbl(dim) = 1.0; Vector<double> y_row_dbl(y_row); Q.AddVec2(weight, xplus_row_dbl); l.AddVecVec(weight, y_row_dbl, xplus_row_dbl); beta += weight; sum_xplus(dim) += weight; for (int32 j = 0; j < dim; j++) { sum_xplus(j) += weight * x_row(j); sumsq_x(j) += weight * x_row(j)*x_row(j); sumsq_diff(j) += weight * (x_row(j)-y_row(j)) * (x_row(j)-y_row(j)); c(j) += weight * y_row(j)*y_row(j); } } } Matrix<BaseFloat> A(dim, dim); // will give this to LVTLN object // as transform matrix. SpMatrix<double> Qinv(Q); Qinv.Invert(); for (int32 i = 0; i < dim; i++) { Vector<double> w_i(dim+1); SubVector<double> l_i(l, i); w_i.AddSpVec(1.0, Qinv, l_i, 0.0); // w_i = Q^{-1} l_i SubVector<double> a_i(w_i, 0, dim); A.Row(i).CopyFromVec(a_i); BaseFloat error = (VecSpVec(w_i, Q, w_i) - 2.0*VecVec(w_i, l_i) + c(i)) / beta, sqdiff = sumsq_diff(i) / beta, scatter = sumsq_x(i) / beta; KALDI_LOG << "For dimension " << i << ", sum-squared error in linear approximation is " << error << ", versus feature-difference " << sqdiff << ", orig-sumsq is " << scatter; if (normalize_var) { // add a scaling to normalize the variance. double x_var = scatter - pow(sum_xplus(i) / beta, 2.0); double y_var = VecSpVec(w_i, Q, w_i)/beta - pow(VecVec(w_i, sum_xplus)/beta, 2.0); double scale = sqrt(x_var / y_var); KALDI_LOG << "For dimension " << i << ", variance of original and transformed data is " << x_var << " and " << y_var << " respectively; scaling matrix row by " << scale << " to make them equal."; A.Row(i).Scale(scale); } } lvtln.SetTransform(class_idx, A); } else { // Here is the computation if we normalize the full covariance. // see the document "Notes for affine-transform-based VTLN" for explanation, // here: http://www.danielpovey.com/files/2010_vtln_notes.pdf double T = 0.0; SpMatrix<double> XX(dim); // sum of x x^t Vector<double> x(dim); // sum of x. Vector<double> y(dim); // sum of y. Matrix<double> XY(dim, dim); // sum of x y^t SequentialBaseFloatMatrixReader x_reader(feats_orig_rspecifier); RandomAccessBaseFloatMatrixReader y_reader(feats_transformed_rspecifier); RandomAccessPosteriorReader post_reader(posteriors_rspecifier); for (; !x_reader.Done(); x_reader.Next()) { std::string utt = x_reader.Key(); if (!y_reader.HasKey(utt)) { KALDI_WARN << "No transformed features for key " << utt; continue; } const Matrix<BaseFloat> &x_feats = x_reader.Value(); const Matrix<BaseFloat> &y_feats = y_reader.Value(utt); if (x_feats.NumRows() != y_feats.NumRows() || x_feats.NumCols() != y_feats.NumCols() || x_feats.NumCols() != dim) { KALDI_ERR << "Number of rows and/or columns differs in features, or features have different dim from lvtln object"; } Vector<BaseFloat> weights(x_feats.NumRows()); if (posteriors_rspecifier != "") { if (!post_reader.HasKey(utt)) { KALDI_WARN << "No posteriors for utterance " << utt; continue; } const Posterior &post = post_reader.Value(utt); if (static_cast<int32>(post.size()) != x_feats.NumRows()) KALDI_ERR << "Mismatch in size of posterior"; for (size_t i = 0; i < post.size(); i++) for (size_t j = 0; j < post[i].size(); j++) weights(i) += post[i][j].second; } else weights.Add(1.0); // Now get stats. for (int32 i = 0; i < x_feats.NumRows(); i++) { BaseFloat weight = weights(i); SubVector<BaseFloat> x_row(x_feats, i); SubVector<BaseFloat> y_row(y_feats, i); Vector<double> x_dbl(x_row); Vector<double> y_dbl(y_row); T += weight; XX.AddVec2(weight, x_dbl); x.AddVec(weight, x_row); y.AddVec(weight, y_row); XY.AddVecVec(weight, x_dbl, y_dbl); } } KALDI_ASSERT(T > 0.0); Vector<double> xbar(x); xbar.Scale(1.0/T); SpMatrix<double> S(XX); S.Scale(1.0/T); S.AddVec2(-1.0, xbar); TpMatrix<double> C_tp(dim); C_tp.Cholesky(S); // get cholesky factor. TpMatrix<double> Cinv_tp(C_tp); Cinv_tp.Invert(); Matrix<double> C(C_tp); // use regular matrix as more stuff is implemented for this case. Matrix<double> Cinv(Cinv_tp); Matrix<double> P0(XY); P0.AddVecVec(-1.0, xbar, y); Matrix<double> P(dim, dim), tmp(dim, dim); tmp.AddMatMat(1.0, P0, kNoTrans, Cinv, kTrans, 0.0); // tmp := P0 * C^{-T} P.AddMatMat(1.0, Cinv, kNoTrans, tmp, kNoTrans, 0.0); // P := C^{-1} * P0 Vector<double> l(dim); Matrix<double> U(dim, dim), Vt(dim, dim); P.Svd(&l, &U, &Vt); l.Scale(1.0/T); // normalize for diagnostic purposes. KALDI_LOG << "Singular values of P are: " << l; Matrix<double> N(dim, dim); N.AddMatMat(1.0, Vt, kTrans, U, kTrans, 0.0); // N := V * U^T. Matrix<double> M(dim, dim); tmp.AddMatMat(1.0, N, kNoTrans, Cinv, kNoTrans, 0.0); // tmp := N * C^{-1} M.AddMatMat(1.0, C, kNoTrans, tmp, kNoTrans, 0.0); // M := C * tmp = C * N * C^{-1} Matrix<BaseFloat> Mf(M); lvtln.SetTransform(class_idx, Mf); // in this setup we don't // need the offset, v. } if (warp >= 0.0) lvtln.SetWarp(class_idx, warp); { // Write lvtln object. Output ko(lvtln_wxfilename, binary); lvtln.Write(ko.Stream(), binary); } return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |