gmm-train-lvtln-special.cc
12.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
// gmmbin/gmm-train-lvtln-special.cc
// Copyright 2009-2011 Microsoft Corporation
// Copyright 2014 Vimal Manohar
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "transform/lvtln.h"
#include "hmm/posterior.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using kaldi::int32;
const char *usage =
"Set one of the transforms in lvtln to the minimum-squared-error solution\n"
"to mapping feats-untransformed to feats-transformed; posteriors may\n"
"optionally be used to downweight/remove silence.\n"
"Usage: gmm-train-lvtln-special [options] class-index <lvtln-in> <lvtln-out> "
" <feats-untransformed-rspecifier> <feats-transformed-rspecifier> [<posteriors-rspecifier>]\n"
"e.g.: \n"
" gmm-train-lvtln-special 5 5.lvtln 6.lvtln scp:train.scp scp:train_warp095.scp ark:nosil.post\n";
BaseFloat warp = -1.0;
bool binary = true;
bool normalize_var = false;
bool normalize_covar = false;
std::string weights_rspecifier;
ParseOptions po(usage);
po.Register("binary", &binary, "Write output in binary mode");
po.Register("warp", &warp, "If supplied, can be used to set warp factor"
"for this transform");
po.Register("normalize-var", &normalize_var, "Normalize diagonal of variance "
"to be the same before and after transform.");
po.Register("normalize-covar", &normalize_covar, "Normalize (matrix-valued) "
"covariance to be the same before and after transform.");
po.Register("weights-in", &weights_rspecifier,
"Can be used to take posteriors as an scp or ark file of weights "
"instead of giving <posteriors-rspecfier>");
po.Read(argc, argv);
if (po.NumArgs() < 5 || po.NumArgs() > 6) {
po.PrintUsage();
exit(1);
}
std::string class_idx_str = po.GetArg(1);
int32 class_idx;
if (!ConvertStringToInteger(class_idx_str, &class_idx))
KALDI_ERR << "Expected integer first argument: got " << class_idx_str;
std::string lvtln_rxfilename = po.GetArg(2),
lvtln_wxfilename = po.GetArg(3),
feats_orig_rspecifier = po.GetArg(4),
feats_transformed_rspecifier = po.GetArg(5),
posteriors_rspecifier = po.GetOptArg(6);
// Get lvtln object.
LinearVtln lvtln;
ReadKaldiObject(lvtln_rxfilename, &lvtln);
int32 dim = lvtln.Dim(); // feature dimension [we hope!].
if (!normalize_covar) {
// Below is the computation if we are not normalizing the full covariance.
// Ignoring weighting (which is a straightforward extension), the problem is this:
// we have original features x(t) and transformed features y(t) [both x(t) and y(t)
// are vectors of size D]. We are training an affine transform to minimize the sum-squared
// error between A x(t) + b and y(t). Let x(t)^+ be x(t) with a 1 appended, and let
// w_i be the i'th row of the matrix [ A; b ], as in CMLLR.
// We are minimizeing
// \sum_{t = 1}^T \sum_{i = 1}^D (w_i^T x(t)^+ - y_i(t))^2,
// We can express this in terms of sufficient statistics as:
// \sum_{i = 1}^D w_i^T Q w_i - 2 w_i^T l_i + c_i,
// where
// Q_i = \sum_{t = 1}^T x(t)^+ x(t)^+^T
// l_i = \sum_{t = 1}^T x(t)^+ y_i(t)
// c_i = \sum_{t = 1}^T y_i(t)^2
// The solution for row i is: w_i = Q^{-1} l_i
// and the sum-square error for index i is:
// w_i^T Q w_i - 2 w_i^T l_i + c_i .
// Note that for lvtln purposes we throw away the "offset" element (i.e. the last
// element of each row w_i).
// Declare statistics we use to estimate transform.
SpMatrix<double> Q(dim+1); // quadratic stats == outer product of x^+.
Matrix<double> l(dim, dim+1); // i'th row of l is l_i
Vector<double> c(dim);
double beta = 0.0;
Vector<double> sum_xplus(dim+1); // sum of x_i^+
Vector<double> sumsq_x(dim); // sumsq of x_i
Vector<double> sumsq_diff(dim); // sum of x_i-y_i
SequentialBaseFloatMatrixReader x_reader(feats_orig_rspecifier);
RandomAccessBaseFloatMatrixReader y_reader(feats_transformed_rspecifier);
RandomAccessPosteriorReader post_reader(posteriors_rspecifier);
RandomAccessBaseFloatVectorReader weights_reader(weights_rspecifier);
for (; !x_reader.Done(); x_reader.Next()) {
std::string utt = x_reader.Key();
if (!y_reader.HasKey(utt)) {
KALDI_WARN << "No transformed features for key " << utt;
continue;
}
const Matrix<BaseFloat> &x_feats = x_reader.Value();
const Matrix<BaseFloat> &y_feats = y_reader.Value(utt);
if (x_feats.NumRows() != y_feats.NumRows() ||
x_feats.NumCols() != y_feats.NumCols() ||
x_feats.NumCols() != dim) {
KALDI_ERR << "Number of rows and/or columns differs in features, or features have different dim from lvtln object";
}
Vector<BaseFloat> weights(x_feats.NumRows());
if (weights_rspecifier == "" && posteriors_rspecifier != "") {
if (!post_reader.HasKey(utt)) {
KALDI_WARN << "No posteriors for utterance " << utt;
continue;
}
const Posterior &post = post_reader.Value(utt);
if (static_cast<int32>(post.size()) != x_feats.NumRows())
KALDI_ERR << "Mismatch in size of posterior";
for (size_t i = 0; i < post.size(); i++)
for (size_t j = 0; j < post[i].size(); j++)
weights(i) += post[i][j].second;
} else if (weights_rspecifier != "") {
if (!weights_reader.HasKey(utt)) {
KALDI_WARN << "No weights for utterance " << utt;
continue;
}
weights.CopyFromVec(weights_reader.Value(utt));
} else {
weights.Add(1.0);
}
// Now get stats.
for (int32 i = 0; i < x_feats.NumRows(); i++) {
BaseFloat weight = weights(i);
SubVector<BaseFloat> x_row(x_feats, i);
SubVector<BaseFloat> y_row(y_feats, i);
Vector<double> xplus_row_dbl(dim+1);
for (int32 j = 0; j < dim; j++)
xplus_row_dbl(j) = x_row(j);
xplus_row_dbl(dim) = 1.0;
Vector<double> y_row_dbl(y_row);
Q.AddVec2(weight, xplus_row_dbl);
l.AddVecVec(weight, y_row_dbl, xplus_row_dbl);
beta += weight;
sum_xplus(dim) += weight;
for (int32 j = 0; j < dim; j++) {
sum_xplus(j) += weight * x_row(j);
sumsq_x(j) += weight * x_row(j)*x_row(j);
sumsq_diff(j) += weight * (x_row(j)-y_row(j)) * (x_row(j)-y_row(j));
c(j) += weight * y_row(j)*y_row(j);
}
}
}
Matrix<BaseFloat> A(dim, dim); // will give this to LVTLN object
// as transform matrix.
SpMatrix<double> Qinv(Q);
Qinv.Invert();
for (int32 i = 0; i < dim; i++) {
Vector<double> w_i(dim+1);
SubVector<double> l_i(l, i);
w_i.AddSpVec(1.0, Qinv, l_i, 0.0); // w_i = Q^{-1} l_i
SubVector<double> a_i(w_i, 0, dim);
A.Row(i).CopyFromVec(a_i);
BaseFloat error = (VecSpVec(w_i, Q, w_i) - 2.0*VecVec(w_i, l_i) + c(i)) / beta,
sqdiff = sumsq_diff(i) / beta,
scatter = sumsq_x(i) / beta;
KALDI_LOG << "For dimension " << i << ", sum-squared error in linear approximation is "
<< error << ", versus feature-difference " << sqdiff << ", orig-sumsq is "
<< scatter;
if (normalize_var) { // add a scaling to normalize the variance.
double x_var = scatter - pow(sum_xplus(i) / beta, 2.0);
double y_var = VecSpVec(w_i, Q, w_i)/beta
- pow(VecVec(w_i, sum_xplus)/beta, 2.0);
double scale = sqrt(x_var / y_var);
KALDI_LOG << "For dimension " << i
<< ", variance of original and transformed data is " << x_var
<< " and " << y_var << " respectively; scaling matrix row by "
<< scale << " to make them equal.";
A.Row(i).Scale(scale);
}
}
lvtln.SetTransform(class_idx, A);
} else {
// Here is the computation if we normalize the full covariance.
// see the document "Notes for affine-transform-based VTLN" for explanation,
// here: http://www.danielpovey.com/files/2010_vtln_notes.pdf
double T = 0.0;
SpMatrix<double> XX(dim); // sum of x x^t
Vector<double> x(dim); // sum of x.
Vector<double> y(dim); // sum of y.
Matrix<double> XY(dim, dim); // sum of x y^t
SequentialBaseFloatMatrixReader x_reader(feats_orig_rspecifier);
RandomAccessBaseFloatMatrixReader y_reader(feats_transformed_rspecifier);
RandomAccessPosteriorReader post_reader(posteriors_rspecifier);
for (; !x_reader.Done(); x_reader.Next()) {
std::string utt = x_reader.Key();
if (!y_reader.HasKey(utt)) {
KALDI_WARN << "No transformed features for key " << utt;
continue;
}
const Matrix<BaseFloat> &x_feats = x_reader.Value();
const Matrix<BaseFloat> &y_feats = y_reader.Value(utt);
if (x_feats.NumRows() != y_feats.NumRows() ||
x_feats.NumCols() != y_feats.NumCols() ||
x_feats.NumCols() != dim) {
KALDI_ERR << "Number of rows and/or columns differs in features, or features have different dim from lvtln object";
}
Vector<BaseFloat> weights(x_feats.NumRows());
if (posteriors_rspecifier != "") {
if (!post_reader.HasKey(utt)) {
KALDI_WARN << "No posteriors for utterance " << utt;
continue;
}
const Posterior &post = post_reader.Value(utt);
if (static_cast<int32>(post.size()) != x_feats.NumRows())
KALDI_ERR << "Mismatch in size of posterior";
for (size_t i = 0; i < post.size(); i++)
for (size_t j = 0; j < post[i].size(); j++)
weights(i) += post[i][j].second;
} else weights.Add(1.0);
// Now get stats.
for (int32 i = 0; i < x_feats.NumRows(); i++) {
BaseFloat weight = weights(i);
SubVector<BaseFloat> x_row(x_feats, i);
SubVector<BaseFloat> y_row(y_feats, i);
Vector<double> x_dbl(x_row);
Vector<double> y_dbl(y_row);
T += weight;
XX.AddVec2(weight, x_dbl);
x.AddVec(weight, x_row);
y.AddVec(weight, y_row);
XY.AddVecVec(weight, x_dbl, y_dbl);
}
}
KALDI_ASSERT(T > 0.0);
Vector<double> xbar(x); xbar.Scale(1.0/T);
SpMatrix<double> S(XX); S.Scale(1.0/T);
S.AddVec2(-1.0, xbar);
TpMatrix<double> C_tp(dim);
C_tp.Cholesky(S); // get cholesky factor.
TpMatrix<double> Cinv_tp(C_tp);
Cinv_tp.Invert();
Matrix<double> C(C_tp); // use regular matrix as more stuff is implemented for this case.
Matrix<double> Cinv(Cinv_tp);
Matrix<double> P0(XY);
P0.AddVecVec(-1.0, xbar, y);
Matrix<double> P(dim, dim), tmp(dim, dim);
tmp.AddMatMat(1.0, P0, kNoTrans, Cinv, kTrans, 0.0); // tmp := P0 * C^{-T}
P.AddMatMat(1.0, Cinv, kNoTrans, tmp, kNoTrans, 0.0); // P := C^{-1} * P0
Vector<double> l(dim);
Matrix<double> U(dim, dim), Vt(dim, dim);
P.Svd(&l, &U, &Vt);
l.Scale(1.0/T); // normalize for diagnostic purposes.
KALDI_LOG << "Singular values of P are: " << l;
Matrix<double> N(dim, dim);
N.AddMatMat(1.0, Vt, kTrans, U, kTrans, 0.0); // N := V * U^T.
Matrix<double> M(dim, dim);
tmp.AddMatMat(1.0, N, kNoTrans, Cinv, kNoTrans, 0.0); // tmp := N * C^{-1}
M.AddMatMat(1.0, C, kNoTrans, tmp, kNoTrans, 0.0); // M := C * tmp = C * N * C^{-1}
Matrix<BaseFloat> Mf(M);
lvtln.SetTransform(class_idx, Mf); // in this setup we don't
// need the offset, v.
}
if (warp >= 0.0)
lvtln.SetWarp(class_idx, warp);
{ // Write lvtln object.
Output ko(lvtln_wxfilename, binary);
lvtln.Write(ko.Stream(), binary);
}
return 0;
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}