Blame view
src/ivectorbin/ivector-compute-lda.cc
11.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
// ivectorbin/ivector-compute-lda.cc // Copyright 2013 Daniel Povey // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "ivector/ivector-extractor.h" #include "util/kaldi-thread.h" namespace kaldi { class CovarianceStats { public: CovarianceStats(int32 dim): tot_covar_(dim), between_covar_(dim), num_spk_(0), num_utt_(0) { } /// get total covariance, normalized per number of frames. void GetTotalCovar(SpMatrix<double> *tot_covar) const { KALDI_ASSERT(num_utt_ > 0); *tot_covar = tot_covar_; tot_covar->Scale(1.0 / num_utt_); } void GetWithinCovar(SpMatrix<double> *within_covar) { KALDI_ASSERT(num_utt_ - num_spk_ > 0); *within_covar = tot_covar_; within_covar->AddSp(-1.0, between_covar_); within_covar->Scale(1.0 / num_utt_); } void AccStats(const Matrix<double> &utts_of_this_spk) { int32 num_utts = utts_of_this_spk.NumRows(); tot_covar_.AddMat2(1.0, utts_of_this_spk, kTrans, 1.0); Vector<double> spk_average(Dim()); spk_average.AddRowSumMat(1.0 / num_utts, utts_of_this_spk); between_covar_.AddVec2(num_utts, spk_average); num_utt_ += num_utts; num_spk_ += 1; } /// Will return Empty() if the within-class covariance matrix would be zero. bool SingularTotCovar() { return (num_utt_ < Dim()); } bool Empty() { return (num_utt_ - num_spk_ == 0); } std::string Info() { std::ostringstream ostr; ostr << num_spk_ << " speakers, " << num_utt_ << " utterances. "; return ostr.str(); } int32 Dim() { return tot_covar_.NumRows(); } // Use default constructor and assignment operator. void AddStats(const CovarianceStats &other) { tot_covar_.AddSp(1.0, other.tot_covar_); between_covar_.AddSp(1.0, other.between_covar_); num_spk_ += other.num_spk_; num_utt_ += other.num_utt_; } private: KALDI_DISALLOW_COPY_AND_ASSIGN(CovarianceStats); SpMatrix<double> tot_covar_; SpMatrix<double> between_covar_; int32 num_spk_; int32 num_utt_; }; template<class Real> void ComputeNormalizingTransform(const SpMatrix<Real> &covar, Real floor, MatrixBase<Real> *proj) { int32 dim = covar.NumRows(); Matrix<Real> U(dim, dim); Vector<Real> s(dim); covar.Eig(&s, &U); // Sort eigvenvalues from largest to smallest. SortSvd(&s, &U); // Floor eigenvalues to a small positive value. int32 num_floored; floor *= s(0); // Floor relative to the largest eigenvalue s.ApplyFloor(floor, &num_floored); if (num_floored > 0) { KALDI_WARN << "Floored " << num_floored << " eigenvalues of covariance " << "to " << floor; } // Next two lines computes projection proj, such that // proj * covar * proj^T = I. s.ApplyPow(-0.5); proj->AddDiagVecMat(1.0, s, U, kTrans, 0.0); } void ComputeLdaTransform( const std::map<std::string, Vector<BaseFloat> *> &utt2ivector, const std::map<std::string, std::vector<std::string> > &spk2utt, BaseFloat total_covariance_factor, BaseFloat covariance_floor, MatrixBase<BaseFloat> *lda_out) { KALDI_ASSERT(!utt2ivector.empty()); int32 lda_dim = lda_out->NumRows(), dim = lda_out->NumCols(); KALDI_ASSERT(dim == utt2ivector.begin()->second->Dim()); KALDI_ASSERT(lda_dim > 0 && lda_dim <= dim); CovarianceStats stats(dim); std::map<std::string, std::vector<std::string> >::const_iterator iter; for (iter = spk2utt.begin(); iter != spk2utt.end(); ++iter) { const std::vector<std::string> &uttlist = iter->second; KALDI_ASSERT(!uttlist.empty()); int32 N = uttlist.size(); // number of utterances. Matrix<double> utts_of_this_spk(N, dim); for (int32 n = 0; n < N; n++) { std::string utt = uttlist[n]; KALDI_ASSERT(utt2ivector.count(utt) != 0); utts_of_this_spk.Row(n).CopyFromVec( *(utt2ivector.find(utt)->second)); } stats.AccStats(utts_of_this_spk); } KALDI_LOG << "Stats have " << stats.Info(); KALDI_ASSERT(!stats.Empty()); KALDI_ASSERT(!stats.SingularTotCovar() && "Too little data for iVector dimension."); SpMatrix<double> total_covar; stats.GetTotalCovar(&total_covar); SpMatrix<double> within_covar; stats.GetWithinCovar(&within_covar); SpMatrix<double> mat_to_normalize(dim); mat_to_normalize.AddSp(total_covariance_factor, total_covar); mat_to_normalize.AddSp(1.0 - total_covariance_factor, within_covar); Matrix<double> T(dim, dim); ComputeNormalizingTransform(mat_to_normalize, static_cast<double>(covariance_floor), &T); SpMatrix<double> between_covar(total_covar); between_covar.AddSp(-1.0, within_covar); SpMatrix<double> between_covar_proj(dim); between_covar_proj.AddMat2Sp(1.0, T, kNoTrans, between_covar, 0.0); Matrix<double> U(dim, dim); Vector<double> s(dim); between_covar_proj.Eig(&s, &U); bool sort_on_absolute_value = false; // any negative ones will go last (they // shouldn't exist anyway so doesn't // really matter) SortSvd(&s, &U, static_cast<Matrix<double>*>(NULL), sort_on_absolute_value); KALDI_LOG << "Singular values of between-class covariance after projecting " << "with interpolated [total/within] covariance with a weight of " << total_covariance_factor << " on the total covariance, are: " << s; // U^T is the transform that will diagonalize the between-class covariance. // U_part is just the part of U that corresponds to the kept dimensions. SubMatrix<double> U_part(U, 0, dim, 0, lda_dim); // We first transform by T and then by U_part^T. This means T // goes on the right. Matrix<double> temp(lda_dim, dim); temp.AddMatMat(1.0, U_part, kTrans, T, kNoTrans, 0.0); lda_out->CopyFromMat(temp); } void ComputeAndSubtractMean( std::map<std::string, Vector<BaseFloat> *> utt2ivector, Vector<BaseFloat> *mean_out) { int32 dim = utt2ivector.begin()->second->Dim(); size_t num_ivectors = utt2ivector.size(); Vector<double> mean(dim); std::map<std::string, Vector<BaseFloat> *>::iterator iter; for (iter = utt2ivector.begin(); iter != utt2ivector.end(); ++iter) mean.AddVec(1.0 / num_ivectors, *(iter->second)); mean_out->Resize(dim); mean_out->CopyFromVec(mean); for (iter = utt2ivector.begin(); iter != utt2ivector.end(); ++iter) iter->second->AddVec(-1.0, *mean_out); } } int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; try { const char *usage = "Compute an LDA matrix for iVector system. Reads in iVectors per utterance, " "and an utt2spk file which it uses to help work out the within-speaker and " "between-speaker covariance matrices. Outputs an LDA projection to a " "specified dimension. By default it will normalize so that the projected " "within-class covariance is unit, but if you set --normalize-total-covariance " "to true, it will normalize the total covariance. " "Note: the transform we produce is actually an affine transform which will " "also set the global mean to zero. " " " "Usage: ivector-compute-lda [options] <ivector-rspecifier> <utt2spk-rspecifier> " "<lda-matrix-out> " "e.g.: " " ivector-compute-lda ark:ivectors.ark ark:utt2spk lda.mat "; ParseOptions po(usage); int32 lda_dim = 100; // Dimension we reduce to BaseFloat total_covariance_factor = 0.0, covariance_floor = 1.0e-06; bool binary = true; po.Register("dim", &lda_dim, "Dimension we keep with the LDA transform"); po.Register("total-covariance-factor", &total_covariance_factor, "If this is 0.0 we normalize to make the within-class covariance " "unit; if 1.0, the total covariance; if between, we normalize " "an interpolated matrix."); po.Register("covariance-floor", &covariance_floor, "Floor the eigenvalues " "of the interpolated covariance matrix to the product of its " "largest eigenvalue and this number."); po.Register("binary", &binary, "Write output in binary mode"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string ivector_rspecifier = po.GetArg(1), utt2spk_rspecifier = po.GetArg(2), lda_wxfilename = po.GetArg(3); KALDI_ASSERT(covariance_floor >= 0.0); int32 num_done = 0, num_err = 0, dim = 0; SequentialBaseFloatVectorReader ivector_reader(ivector_rspecifier); RandomAccessTokenReader utt2spk_reader(utt2spk_rspecifier); std::map<std::string, Vector<BaseFloat> *> utt2ivector; std::map<std::string, std::vector<std::string> > spk2utt; for (; !ivector_reader.Done(); ivector_reader.Next()) { std::string utt = ivector_reader.Key(); const Vector<BaseFloat> &ivector = ivector_reader.Value(); if (utt2ivector.count(utt) != 0) { KALDI_WARN << "Duplicate iVector found for utterance " << utt << ", ignoring it."; num_err++; continue; } if (!utt2spk_reader.HasKey(utt)) { KALDI_WARN << "utt2spk has no entry for utterance " << utt << ", skipping it."; num_err++; continue; } std::string spk = utt2spk_reader.Value(utt); utt2ivector[utt] = new Vector<BaseFloat>(ivector); if (dim == 0) { dim = ivector.Dim(); } else { KALDI_ASSERT(dim == ivector.Dim() && "iVector dimension mismatch"); } spk2utt[spk].push_back(utt); num_done++; } KALDI_LOG << "Read " << num_done << " utterances, " << num_err << " with errors."; if (num_done == 0) { KALDI_ERR << "Did not read any utterances."; } else { KALDI_LOG << "Computing within-class covariance."; } Vector<BaseFloat> mean; ComputeAndSubtractMean(utt2ivector, &mean); KALDI_LOG << "2-norm of iVector mean is " << mean.Norm(2.0); Matrix<BaseFloat> lda_mat(lda_dim, dim + 1); // LDA matrix without the offset term. SubMatrix<BaseFloat> linear_part(lda_mat, 0, lda_dim, 0, dim); ComputeLdaTransform(utt2ivector, spk2utt, total_covariance_factor, covariance_floor, &linear_part); Vector<BaseFloat> offset(lda_dim); offset.AddMatVec(-1.0, linear_part, kNoTrans, mean, 0.0); lda_mat.CopyColFromVec(offset, dim); // add mean-offset to transform KALDI_VLOG(2) << "2-norm of transformed iVector mean is " << offset.Norm(2.0); WriteKaldiObject(lda_mat, lda_wxfilename, binary); KALDI_LOG << "Wrote LDA transform to " << PrintableWxfilename(lda_wxfilename); std::map<std::string, Vector<BaseFloat> *>::iterator iter; for (iter = utt2ivector.begin(); iter != utt2ivector.end(); ++iter) delete iter->second; utt2ivector.clear(); return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |