ivector-compute-lda.cc
11.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// ivectorbin/ivector-compute-lda.cc
// Copyright 2013 Daniel Povey
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/am-diag-gmm.h"
#include "ivector/ivector-extractor.h"
#include "util/kaldi-thread.h"
namespace kaldi {
class CovarianceStats {
public:
CovarianceStats(int32 dim): tot_covar_(dim),
between_covar_(dim),
num_spk_(0),
num_utt_(0) { }
/// get total covariance, normalized per number of frames.
void GetTotalCovar(SpMatrix<double> *tot_covar) const {
KALDI_ASSERT(num_utt_ > 0);
*tot_covar = tot_covar_;
tot_covar->Scale(1.0 / num_utt_);
}
void GetWithinCovar(SpMatrix<double> *within_covar) {
KALDI_ASSERT(num_utt_ - num_spk_ > 0);
*within_covar = tot_covar_;
within_covar->AddSp(-1.0, between_covar_);
within_covar->Scale(1.0 / num_utt_);
}
void AccStats(const Matrix<double> &utts_of_this_spk) {
int32 num_utts = utts_of_this_spk.NumRows();
tot_covar_.AddMat2(1.0, utts_of_this_spk, kTrans, 1.0);
Vector<double> spk_average(Dim());
spk_average.AddRowSumMat(1.0 / num_utts, utts_of_this_spk);
between_covar_.AddVec2(num_utts, spk_average);
num_utt_ += num_utts;
num_spk_ += 1;
}
/// Will return Empty() if the within-class covariance matrix would be zero.
bool SingularTotCovar() { return (num_utt_ < Dim()); }
bool Empty() { return (num_utt_ - num_spk_ == 0); }
std::string Info() {
std::ostringstream ostr;
ostr << num_spk_ << " speakers, " << num_utt_ << " utterances. ";
return ostr.str();
}
int32 Dim() { return tot_covar_.NumRows(); }
// Use default constructor and assignment operator.
void AddStats(const CovarianceStats &other) {
tot_covar_.AddSp(1.0, other.tot_covar_);
between_covar_.AddSp(1.0, other.between_covar_);
num_spk_ += other.num_spk_;
num_utt_ += other.num_utt_;
}
private:
KALDI_DISALLOW_COPY_AND_ASSIGN(CovarianceStats);
SpMatrix<double> tot_covar_;
SpMatrix<double> between_covar_;
int32 num_spk_;
int32 num_utt_;
};
template<class Real>
void ComputeNormalizingTransform(const SpMatrix<Real> &covar,
Real floor,
MatrixBase<Real> *proj) {
int32 dim = covar.NumRows();
Matrix<Real> U(dim, dim);
Vector<Real> s(dim);
covar.Eig(&s, &U);
// Sort eigvenvalues from largest to smallest.
SortSvd(&s, &U);
// Floor eigenvalues to a small positive value.
int32 num_floored;
floor *= s(0); // Floor relative to the largest eigenvalue
s.ApplyFloor(floor, &num_floored);
if (num_floored > 0) {
KALDI_WARN << "Floored " << num_floored << " eigenvalues of covariance "
<< "to " << floor;
}
// Next two lines computes projection proj, such that
// proj * covar * proj^T = I.
s.ApplyPow(-0.5);
proj->AddDiagVecMat(1.0, s, U, kTrans, 0.0);
}
void ComputeLdaTransform(
const std::map<std::string, Vector<BaseFloat> *> &utt2ivector,
const std::map<std::string, std::vector<std::string> > &spk2utt,
BaseFloat total_covariance_factor,
BaseFloat covariance_floor,
MatrixBase<BaseFloat> *lda_out) {
KALDI_ASSERT(!utt2ivector.empty());
int32 lda_dim = lda_out->NumRows(), dim = lda_out->NumCols();
KALDI_ASSERT(dim == utt2ivector.begin()->second->Dim());
KALDI_ASSERT(lda_dim > 0 && lda_dim <= dim);
CovarianceStats stats(dim);
std::map<std::string, std::vector<std::string> >::const_iterator iter;
for (iter = spk2utt.begin(); iter != spk2utt.end(); ++iter) {
const std::vector<std::string> &uttlist = iter->second;
KALDI_ASSERT(!uttlist.empty());
int32 N = uttlist.size(); // number of utterances.
Matrix<double> utts_of_this_spk(N, dim);
for (int32 n = 0; n < N; n++) {
std::string utt = uttlist[n];
KALDI_ASSERT(utt2ivector.count(utt) != 0);
utts_of_this_spk.Row(n).CopyFromVec(
*(utt2ivector.find(utt)->second));
}
stats.AccStats(utts_of_this_spk);
}
KALDI_LOG << "Stats have " << stats.Info();
KALDI_ASSERT(!stats.Empty());
KALDI_ASSERT(!stats.SingularTotCovar() &&
"Too little data for iVector dimension.");
SpMatrix<double> total_covar;
stats.GetTotalCovar(&total_covar);
SpMatrix<double> within_covar;
stats.GetWithinCovar(&within_covar);
SpMatrix<double> mat_to_normalize(dim);
mat_to_normalize.AddSp(total_covariance_factor, total_covar);
mat_to_normalize.AddSp(1.0 - total_covariance_factor, within_covar);
Matrix<double> T(dim, dim);
ComputeNormalizingTransform(mat_to_normalize,
static_cast<double>(covariance_floor), &T);
SpMatrix<double> between_covar(total_covar);
between_covar.AddSp(-1.0, within_covar);
SpMatrix<double> between_covar_proj(dim);
between_covar_proj.AddMat2Sp(1.0, T, kNoTrans, between_covar, 0.0);
Matrix<double> U(dim, dim);
Vector<double> s(dim);
between_covar_proj.Eig(&s, &U);
bool sort_on_absolute_value = false; // any negative ones will go last (they
// shouldn't exist anyway so doesn't
// really matter)
SortSvd(&s, &U, static_cast<Matrix<double>*>(NULL),
sort_on_absolute_value);
KALDI_LOG << "Singular values of between-class covariance after projecting "
<< "with interpolated [total/within] covariance with a weight of "
<< total_covariance_factor << " on the total covariance, are: " << s;
// U^T is the transform that will diagonalize the between-class covariance.
// U_part is just the part of U that corresponds to the kept dimensions.
SubMatrix<double> U_part(U, 0, dim, 0, lda_dim);
// We first transform by T and then by U_part^T. This means T
// goes on the right.
Matrix<double> temp(lda_dim, dim);
temp.AddMatMat(1.0, U_part, kTrans, T, kNoTrans, 0.0);
lda_out->CopyFromMat(temp);
}
void ComputeAndSubtractMean(
std::map<std::string, Vector<BaseFloat> *> utt2ivector,
Vector<BaseFloat> *mean_out) {
int32 dim = utt2ivector.begin()->second->Dim();
size_t num_ivectors = utt2ivector.size();
Vector<double> mean(dim);
std::map<std::string, Vector<BaseFloat> *>::iterator iter;
for (iter = utt2ivector.begin(); iter != utt2ivector.end(); ++iter)
mean.AddVec(1.0 / num_ivectors, *(iter->second));
mean_out->Resize(dim);
mean_out->CopyFromVec(mean);
for (iter = utt2ivector.begin(); iter != utt2ivector.end(); ++iter)
iter->second->AddVec(-1.0, *mean_out);
}
}
int main(int argc, char *argv[]) {
using namespace kaldi;
typedef kaldi::int32 int32;
try {
const char *usage =
"Compute an LDA matrix for iVector system. Reads in iVectors per utterance,\n"
"and an utt2spk file which it uses to help work out the within-speaker and\n"
"between-speaker covariance matrices. Outputs an LDA projection to a\n"
"specified dimension. By default it will normalize so that the projected\n"
"within-class covariance is unit, but if you set --normalize-total-covariance\n"
"to true, it will normalize the total covariance.\n"
"Note: the transform we produce is actually an affine transform which will\n"
"also set the global mean to zero.\n"
"\n"
"Usage: ivector-compute-lda [options] <ivector-rspecifier> <utt2spk-rspecifier> "
"<lda-matrix-out>\n"
"e.g.: \n"
" ivector-compute-lda ark:ivectors.ark ark:utt2spk lda.mat\n";
ParseOptions po(usage);
int32 lda_dim = 100; // Dimension we reduce to
BaseFloat total_covariance_factor = 0.0,
covariance_floor = 1.0e-06;
bool binary = true;
po.Register("dim", &lda_dim, "Dimension we keep with the LDA transform");
po.Register("total-covariance-factor", &total_covariance_factor,
"If this is 0.0 we normalize to make the within-class covariance "
"unit; if 1.0, the total covariance; if between, we normalize "
"an interpolated matrix.");
po.Register("covariance-floor", &covariance_floor, "Floor the eigenvalues "
"of the interpolated covariance matrix to the product of its "
"largest eigenvalue and this number.");
po.Register("binary", &binary, "Write output in binary mode");
po.Read(argc, argv);
if (po.NumArgs() != 3) {
po.PrintUsage();
exit(1);
}
std::string ivector_rspecifier = po.GetArg(1),
utt2spk_rspecifier = po.GetArg(2),
lda_wxfilename = po.GetArg(3);
KALDI_ASSERT(covariance_floor >= 0.0);
int32 num_done = 0, num_err = 0, dim = 0;
SequentialBaseFloatVectorReader ivector_reader(ivector_rspecifier);
RandomAccessTokenReader utt2spk_reader(utt2spk_rspecifier);
std::map<std::string, Vector<BaseFloat> *> utt2ivector;
std::map<std::string, std::vector<std::string> > spk2utt;
for (; !ivector_reader.Done(); ivector_reader.Next()) {
std::string utt = ivector_reader.Key();
const Vector<BaseFloat> &ivector = ivector_reader.Value();
if (utt2ivector.count(utt) != 0) {
KALDI_WARN << "Duplicate iVector found for utterance " << utt
<< ", ignoring it.";
num_err++;
continue;
}
if (!utt2spk_reader.HasKey(utt)) {
KALDI_WARN << "utt2spk has no entry for utterance " << utt
<< ", skipping it.";
num_err++;
continue;
}
std::string spk = utt2spk_reader.Value(utt);
utt2ivector[utt] = new Vector<BaseFloat>(ivector);
if (dim == 0) {
dim = ivector.Dim();
} else {
KALDI_ASSERT(dim == ivector.Dim() && "iVector dimension mismatch");
}
spk2utt[spk].push_back(utt);
num_done++;
}
KALDI_LOG << "Read " << num_done << " utterances, "
<< num_err << " with errors.";
if (num_done == 0) {
KALDI_ERR << "Did not read any utterances.";
} else {
KALDI_LOG << "Computing within-class covariance.";
}
Vector<BaseFloat> mean;
ComputeAndSubtractMean(utt2ivector, &mean);
KALDI_LOG << "2-norm of iVector mean is " << mean.Norm(2.0);
Matrix<BaseFloat> lda_mat(lda_dim, dim + 1); // LDA matrix without the offset term.
SubMatrix<BaseFloat> linear_part(lda_mat, 0, lda_dim, 0, dim);
ComputeLdaTransform(utt2ivector,
spk2utt,
total_covariance_factor,
covariance_floor,
&linear_part);
Vector<BaseFloat> offset(lda_dim);
offset.AddMatVec(-1.0, linear_part, kNoTrans, mean, 0.0);
lda_mat.CopyColFromVec(offset, dim); // add mean-offset to transform
KALDI_VLOG(2) << "2-norm of transformed iVector mean is "
<< offset.Norm(2.0);
WriteKaldiObject(lda_mat, lda_wxfilename, binary);
KALDI_LOG << "Wrote LDA transform to "
<< PrintableWxfilename(lda_wxfilename);
std::map<std::string, Vector<BaseFloat> *>::iterator iter;
for (iter = utt2ivector.begin(); iter != utt2ivector.end(); ++iter)
delete iter->second;
utt2ivector.clear();
return 0;
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}