Blame view
src/ivectorbin/ivector-compute-plda.cc
4.38 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
// ivectorbin/ivector-compute-plda.cc // Copyright 2013 Daniel Povey // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "ivector/plda.h" int main(int argc, char *argv[]) { using namespace kaldi; typedef kaldi::int32 int32; try { const char *usage = "Computes a Plda object (for Probabilistic Linear Discriminant Analysis) " "from a set of iVectors. Uses speaker information from a spk2utt file " "to compute within and between class variances. " " " "Usage: ivector-compute-plda [options] <spk2utt-rspecifier> <ivector-rspecifier> " "<plda-out> " "e.g.: " " ivector-compute-plda ark:spk2utt ark,s,cs:ivectors.ark plda "; ParseOptions po(usage); bool binary = true; PldaEstimationConfig plda_config; plda_config.Register(&po); po.Register("binary", &binary, "Write output in binary mode"); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } std::string spk2utt_rspecifier = po.GetArg(1), ivector_rspecifier = po.GetArg(2), plda_wxfilename = po.GetArg(3); int64 num_spk_done = 0, num_spk_err = 0, num_utt_done = 0, num_utt_err = 0; SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier); RandomAccessBaseFloatVectorReader ivector_reader(ivector_rspecifier); PldaStats plda_stats; for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) { std::string spk = spk2utt_reader.Key(); const std::vector<std::string> &uttlist = spk2utt_reader.Value(); if (uttlist.empty()) { KALDI_ERR << "Speaker with no utterances."; } std::vector<Vector<BaseFloat> > ivectors; ivectors.reserve(uttlist.size()); for (size_t i = 0; i < uttlist.size(); i++) { std::string utt = uttlist[i]; if (!ivector_reader.HasKey(utt)) { KALDI_WARN << "No iVector present in input for utterance " << utt; num_utt_err++; } else { ivectors.resize(ivectors.size() + 1); ivectors.back() = ivector_reader.Value(utt); num_utt_done++; } } if (ivectors.size() == 0) { KALDI_WARN << "Not producing output for speaker " << spk << " since no utterances had iVectors"; num_spk_err++; } else { Matrix<double> ivector_mat(ivectors.size(), ivectors[0].Dim()); for (size_t i = 0; i < ivectors.size(); i++) ivector_mat.Row(i).CopyFromVec(ivectors[i]); double weight = 1.0; // The code supports weighting but // we don't support this at the command-line // level yet. plda_stats.AddSamples(weight, ivector_mat); num_spk_done++; } } if (num_utt_done <= plda_stats.Dim()) KALDI_ERR << "Number of training iVectors is not greater than their " << "dimension, unable to estimate PLDA."; KALDI_LOG << "Accumulated stats from " << num_spk_done << " speakers (" << num_spk_err << " with no utterances), consisting of " << num_utt_done << " utterances (" << num_utt_err << " absent from input)."; if (num_spk_done == 0) KALDI_ERR << "No stats accumulated, unable to estimate PLDA."; if (num_spk_done == num_utt_done) KALDI_ERR << "No speakers with multiple utterances, " << "unable to estimate PLDA."; plda_stats.Sort(); PldaEstimator plda_estimator(plda_stats); Plda plda; plda_estimator.Estimate(plda_config, &plda); WriteKaldiObject(plda, plda_wxfilename, binary); return (num_spk_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |