Blame view
src/kwsbin/lattice-to-kws-index.cc
8.89 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
// kwsbin/lattice-to-kws-index.cc // Copyright 2012 Johns Hopkins University (Author: Guoguo Chen) // Lucas Ondel // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "fstext/fstext-utils.h" #include "lat/kaldi-lattice.h" #include "lat/lattice-functions.h" #include "kws/kaldi-kws.h" #include "kws/kws-functions.h" #include "fstext/epsilon-property.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using fst::VectorFst; typedef kaldi::int32 int32; typedef kaldi::uint64 uint64; const char *usage = "Create an inverted index of the given lattices. The output index is " "in the T*T*T semiring. For details for the semiring, please refer to " "Dogan Can and Murat Saraclar's paper named " "\"Lattice Indexing for Spoken Term Detection\" " " " "Usage: lattice-to-kws-index [options] " " <utter-symtab-rspecifier> <lattice-rspecifier> <index-wspecifier> " "e.g.: " " lattice-to-kws-index ark:utter.symtab ark:1.lats ark:global.idx "; ParseOptions po(usage); int32 frame_subsampling_factor = 1; int32 max_silence_frames = 50; bool strict = true; bool allow_partial = true; BaseFloat max_states_scale = 4; po.Register("frame-subsampling-factor", &frame_subsampling_factor, "Frame subsampling factor. (Default value 1)"); po.Register("max-silence-frames", &max_silence_frames, "If --frame-subsampling-factor is used, --max-silence-frames " "is relative to the the input, not the output frame rate " "(we divide by frame-subsampling-factor and round to " "the closest integer, to get the number of symbols in the " "lattice)."); po.Register("strict", &strict, "Setting --strict=false will cause " "successful termination even if we processed no lattices."); po.Register("max-states-scale", &max_states_scale, "Number of states in the" " original lattice times this scale is the number of states " "allowed when optimizing the index. Negative number means no " "limit on the number of states."); po.Register("allow-partial", &allow_partial, "Allow partial output if fails" " to determinize, otherwise skip determinization if it fails."); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } max_silence_frames = 0.5 + max_silence_frames / static_cast<float>(frame_subsampling_factor); std::string usymtab_rspecifier = po.GetOptArg(1), lats_rspecifier = po.GetArg(2), index_wspecifier = po.GetArg(3); // We use RandomAccessInt32Reader to read the utterance symtab table. RandomAccessInt32Reader usymtab_reader(usymtab_rspecifier); // We read the lattice in as CompactLattice; We need the CompactLattice // structure for the rest of the work SequentialCompactLatticeReader clat_reader(lats_rspecifier); TableWriter< fst::VectorFstTplHolder<KwsLexicographicArc> > index_writer(index_wspecifier); int32 n_done = 0; int32 n_fail = 0; int32 max_states = -1; for (; !clat_reader.Done(); clat_reader.Next()) { std::string key = clat_reader.Key(); CompactLattice clat = clat_reader.Value(); clat_reader.FreeCurrent(); KALDI_LOG << "Processing lattice " << key; if (max_states_scale > 0) { max_states = static_cast<int32>( max_states_scale * static_cast<BaseFloat>(clat.NumStates())); } // Check if we have the corresponding utterance id. if (!usymtab_reader.HasKey(key)) { KALDI_WARN << "Cannot find utterance id for " << key; n_fail++; continue; } // Topologically sort the lattice, if not already sorted. uint64 props = clat.Properties(fst::kFstProperties, false); if (!(props & fst::kTopSorted)) { if (fst::TopSort(&clat) == false) { KALDI_WARN << "Cycles detected in lattice " << key; n_fail++; continue; } } // Get the alignments std::vector<int32> state_times; CompactLatticeStateTimes(clat, &state_times); // Cluster the arcs in the CompactLattice, write the cluster_id on the // output label side. // ClusterLattice() corresponds to the second part of the preprocessing in // Dogan and Murat's paper -- clustering. Note that we do the first part // of preprocessing (the weight pushing step) later when generating the // factor transducer. KALDI_VLOG(1) << "Arc clustering..."; bool success = false; success = kaldi::ClusterLattice(&clat, state_times); if (!success) { KALDI_WARN << "State id's and alignments do not match for lattice " << key; n_fail++; continue; } // The next part is something new, not in the Dogan and Can paper. It is // necessary because we have epsilon arcs, due to silences, in our // lattices. We modify the factor transducer, while maintaining // equivalence, to ensure that states don't have both epsilon *and* // non-epsilon arcs entering them. (and the same, with "entering" // replaced with "leaving"). Later we will find out which states have // non-epsilon arcs leaving/entering them and use it to be more selective // in adding arcs to connect them with the initial/final states. The goal // here is to disallow silences at the beginning or ending of a keyword // occurrence. if (true) { EnsureEpsilonProperty(&clat); fst::TopSort(&clat); // We have to recompute the state times because they will have changed. CompactLatticeStateTimes(clat, &state_times); } // Generate factor transducer // CreateFactorTransducer() corresponds to the "Factor Generation" part of // Dogan and Murat's paper. But we also move the weight pushing step to // this function as we have to compute the alphas and betas anyway. KALDI_VLOG(1) << "Generating factor transducer..."; KwsProductFst factor_transducer; int32 utterance_id = usymtab_reader.Value(key); success = kaldi::CreateFactorTransducer(clat, state_times, utterance_id, &factor_transducer); if (!success) { KALDI_WARN << "Cannot generate factor transducer for lattice " << key; n_fail++; } MaybeDoSanityCheck(factor_transducer); // Remove long silence arc // We add the filtering step in our implementation. This is because gap // between two successive words in a query term should be less than 0.5s KALDI_VLOG(1) << "Removing long silence..."; RemoveLongSilences(max_silence_frames, state_times, &factor_transducer); MaybeDoSanityCheck(factor_transducer); // Do factor merging, and return a transducer in T*T*T semiring. This step // corresponds to the "Factor Merging" part in Dogan and Murat's paper. KALDI_VLOG(1) << "Merging factors..."; KwsLexicographicFst index_transducer; DoFactorMerging(&factor_transducer, &index_transducer); MaybeDoSanityCheck(index_transducer); // Do factor disambiguation. It corresponds to the "Factor Disambiguation" // step in Dogan and Murat's paper. KALDI_VLOG(1) << "Doing factor disambiguation..."; DoFactorDisambiguation(&index_transducer); MaybeDoSanityCheck(index_transducer); // Optimize the above factor transducer. It corresponds to the // "Optimization" step in the paper. KALDI_VLOG(1) << "Optimizing factor transducer..."; OptimizeFactorTransducer(&index_transducer, max_states, allow_partial); MaybeDoSanityCheck(index_transducer); // Write result index_writer.Write(key, index_transducer); n_done++; } KALDI_LOG << "Done " << n_done << " lattices, failed for " << n_fail; if (strict == true) return (n_done != 0 ? 0 : 1); else return 0; } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |