lattice-to-kws-index.cc
8.89 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// kwsbin/lattice-to-kws-index.cc
// Copyright 2012 Johns Hopkins University (Author: Guoguo Chen)
// Lucas Ondel
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "fstext/fstext-utils.h"
#include "lat/kaldi-lattice.h"
#include "lat/lattice-functions.h"
#include "kws/kaldi-kws.h"
#include "kws/kws-functions.h"
#include "fstext/epsilon-property.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using fst::VectorFst;
typedef kaldi::int32 int32;
typedef kaldi::uint64 uint64;
const char *usage =
"Create an inverted index of the given lattices. The output index is \n"
"in the T*T*T semiring. For details for the semiring, please refer to\n"
"Dogan Can and Murat Saraclar's paper named "
"\"Lattice Indexing for Spoken Term Detection\"\n"
"\n"
"Usage: lattice-to-kws-index [options] "
" <utter-symtab-rspecifier> <lattice-rspecifier> <index-wspecifier>\n"
"e.g.: \n"
" lattice-to-kws-index ark:utter.symtab ark:1.lats ark:global.idx\n";
ParseOptions po(usage);
int32 frame_subsampling_factor = 1;
int32 max_silence_frames = 50;
bool strict = true;
bool allow_partial = true;
BaseFloat max_states_scale = 4;
po.Register("frame-subsampling-factor", &frame_subsampling_factor,
"Frame subsampling factor. (Default value 1)");
po.Register("max-silence-frames", &max_silence_frames,
"If --frame-subsampling-factor is used, --max-silence-frames "
"is relative to the the input, not the output frame rate "
"(we divide by frame-subsampling-factor and round to "
"the closest integer, to get the number of symbols in the "
"lattice).");
po.Register("strict", &strict, "Setting --strict=false will cause "
"successful termination even if we processed no lattices.");
po.Register("max-states-scale", &max_states_scale, "Number of states in the"
" original lattice times this scale is the number of states "
"allowed when optimizing the index. Negative number means no "
"limit on the number of states.");
po.Register("allow-partial", &allow_partial, "Allow partial output if fails"
" to determinize, otherwise skip determinization if it fails.");
po.Read(argc, argv);
if (po.NumArgs() != 3) {
po.PrintUsage();
exit(1);
}
max_silence_frames = 0.5 +
max_silence_frames / static_cast<float>(frame_subsampling_factor);
std::string usymtab_rspecifier = po.GetOptArg(1),
lats_rspecifier = po.GetArg(2),
index_wspecifier = po.GetArg(3);
// We use RandomAccessInt32Reader to read the utterance symtab table.
RandomAccessInt32Reader usymtab_reader(usymtab_rspecifier);
// We read the lattice in as CompactLattice; We need the CompactLattice
// structure for the rest of the work
SequentialCompactLatticeReader clat_reader(lats_rspecifier);
TableWriter< fst::VectorFstTplHolder<KwsLexicographicArc> >
index_writer(index_wspecifier);
int32 n_done = 0;
int32 n_fail = 0;
int32 max_states = -1;
for (; !clat_reader.Done(); clat_reader.Next()) {
std::string key = clat_reader.Key();
CompactLattice clat = clat_reader.Value();
clat_reader.FreeCurrent();
KALDI_LOG << "Processing lattice " << key;
if (max_states_scale > 0) {
max_states = static_cast<int32>(
max_states_scale * static_cast<BaseFloat>(clat.NumStates()));
}
// Check if we have the corresponding utterance id.
if (!usymtab_reader.HasKey(key)) {
KALDI_WARN << "Cannot find utterance id for " << key;
n_fail++;
continue;
}
// Topologically sort the lattice, if not already sorted.
uint64 props = clat.Properties(fst::kFstProperties, false);
if (!(props & fst::kTopSorted)) {
if (fst::TopSort(&clat) == false) {
KALDI_WARN << "Cycles detected in lattice " << key;
n_fail++;
continue;
}
}
// Get the alignments
std::vector<int32> state_times;
CompactLatticeStateTimes(clat, &state_times);
// Cluster the arcs in the CompactLattice, write the cluster_id on the
// output label side.
// ClusterLattice() corresponds to the second part of the preprocessing in
// Dogan and Murat's paper -- clustering. Note that we do the first part
// of preprocessing (the weight pushing step) later when generating the
// factor transducer.
KALDI_VLOG(1) << "Arc clustering...";
bool success = false;
success = kaldi::ClusterLattice(&clat, state_times);
if (!success) {
KALDI_WARN << "State id's and alignments do not match for lattice "
<< key;
n_fail++;
continue;
}
// The next part is something new, not in the Dogan and Can paper. It is
// necessary because we have epsilon arcs, due to silences, in our
// lattices. We modify the factor transducer, while maintaining
// equivalence, to ensure that states don't have both epsilon *and*
// non-epsilon arcs entering them. (and the same, with "entering"
// replaced with "leaving"). Later we will find out which states have
// non-epsilon arcs leaving/entering them and use it to be more selective
// in adding arcs to connect them with the initial/final states. The goal
// here is to disallow silences at the beginning or ending of a keyword
// occurrence.
if (true) {
EnsureEpsilonProperty(&clat);
fst::TopSort(&clat);
// We have to recompute the state times because they will have changed.
CompactLatticeStateTimes(clat, &state_times);
}
// Generate factor transducer
// CreateFactorTransducer() corresponds to the "Factor Generation" part of
// Dogan and Murat's paper. But we also move the weight pushing step to
// this function as we have to compute the alphas and betas anyway.
KALDI_VLOG(1) << "Generating factor transducer...";
KwsProductFst factor_transducer;
int32 utterance_id = usymtab_reader.Value(key);
success = kaldi::CreateFactorTransducer(clat,
state_times,
utterance_id,
&factor_transducer);
if (!success) {
KALDI_WARN << "Cannot generate factor transducer for lattice " << key;
n_fail++;
}
MaybeDoSanityCheck(factor_transducer);
// Remove long silence arc
// We add the filtering step in our implementation. This is because gap
// between two successive words in a query term should be less than 0.5s
KALDI_VLOG(1) << "Removing long silence...";
RemoveLongSilences(max_silence_frames, state_times, &factor_transducer);
MaybeDoSanityCheck(factor_transducer);
// Do factor merging, and return a transducer in T*T*T semiring. This step
// corresponds to the "Factor Merging" part in Dogan and Murat's paper.
KALDI_VLOG(1) << "Merging factors...";
KwsLexicographicFst index_transducer;
DoFactorMerging(&factor_transducer, &index_transducer);
MaybeDoSanityCheck(index_transducer);
// Do factor disambiguation. It corresponds to the "Factor Disambiguation"
// step in Dogan and Murat's paper.
KALDI_VLOG(1) << "Doing factor disambiguation...";
DoFactorDisambiguation(&index_transducer);
MaybeDoSanityCheck(index_transducer);
// Optimize the above factor transducer. It corresponds to the
// "Optimization" step in the paper.
KALDI_VLOG(1) << "Optimizing factor transducer...";
OptimizeFactorTransducer(&index_transducer, max_states, allow_partial);
MaybeDoSanityCheck(index_transducer);
// Write result
index_writer.Write(key, index_transducer);
n_done++;
}
KALDI_LOG << "Done " << n_done << " lattices, failed for " << n_fail;
if (strict == true)
return (n_done != 0 ? 0 : 1);
else
return 0;
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}