Blame view
src/lat/minimize-lattice.cc
11.1 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
// lat/minimize-lattice.cc // Copyright 2009-2011 Saarland University (Author: Arnab Ghoshal) // 2012-2013 Johns Hopkins University (Author: Daniel Povey); Chao Weng; // Bagher BabaAli // 2014 Guoguo Chen // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "lat/minimize-lattice.h" #include "hmm/transition-model.h" #include "util/stl-utils.h" namespace fst { /* Process the states in reverse topological order. For each state, compute a hash-value that will be the same for states that can be combined. Then for each pair of states with the same hash value, check that the "to-states" map to the same equivalence class and that the weights are sufficiently similar. */ template<class Weight, class IntType> class CompactLatticeMinimizer { public: typedef CompactLatticeWeightTpl<Weight, IntType> CompactWeight; typedef ArcTpl<CompactWeight> CompactArc; typedef typename CompactArc::StateId StateId; typedef typename CompactArc::Label Label; typedef size_t HashType; CompactLatticeMinimizer(MutableFst<CompactArc> *clat, float delta = fst::kDelta): clat_(clat), delta_(delta) { } bool Minimize() { if (clat_->Properties(kTopSorted, true) == 0) { if (!TopSort(clat_)) { KALDI_WARN << "Topological sorting of state-level lattice failed " "(probably your lexicon has empty words or your LM has epsilon cycles; this " " is a bad idea.)"; return false; } } ComputeStateHashValues(); ComputeStateMap(); ModifyModel(); return true; } static HashType ConvertStringToHashValue(const std::vector<IntType> &vec) { const HashType prime = 53281; kaldi::VectorHasher<IntType> h; HashType ans = static_cast<HashType>(h(vec)); if (ans == 0) ans = prime; // We don't allow a zero answer, as this can cause too many values to be the // same. return ans; } static void InitHashValue(const CompactWeight &final_weight, HashType *h) { const HashType prime1 = 33317, prime2 = 607; // it's pretty random. if (final_weight == CompactWeight::Zero()) *h = prime1; else *h = prime2 * ConvertStringToHashValue(final_weight.String()); } // It's important that this function and UpdateHashValueForFinalProb be // insensitive to the order in which it's called, as the order of the arcs // won't necessarily be the same for different equivalent states. static void UpdateHashValueForTransition(const CompactWeight &weight, Label label, HashType &next_state_hash, HashType *h) { const HashType prime1 = 1447, prime2 = 51907; if (label == 0) label = prime2; // Zeros will cause problems. *h += prime1 * label * (1 + ConvertStringToHashValue(weight.String()) * next_state_hash); // Above, the "1 +" is to ensure that if somehow we get zeros due to // weird word sequences, they don't propagate. } void ComputeStateHashValues() { // Note: clat_ is topologically sorted, and StateId is // signed. Each state's hash value is only a function of toplogically-later // states' hash values. state_hashes_.resize(clat_->NumStates()); for (StateId s = clat_->NumStates() - 1; s >= 0; s--) { HashType this_hash; InitHashValue(clat_->Final(s), &this_hash); for (ArcIterator<MutableFst<CompactArc> > aiter(*clat_, s); !aiter.Done(); aiter.Next()) { const CompactArc &arc = aiter.Value(); HashType next_hash; if (arc.nextstate > s) { next_hash = state_hashes_[arc.nextstate]; } else { KALDI_ASSERT(s == arc.nextstate && "Lattice not topologically sorted [code error]"); next_hash = 1; KALDI_WARN << "Minimizing lattice with self-loops " "(lattices should not have self-loops)"; } UpdateHashValueForTransition(arc.weight, arc.ilabel, next_hash, &this_hash); } state_hashes_[s] = this_hash; } } struct EquivalenceSorter { // This struct has an operator () which you can interpret as a less-than (<) // operator for arcs. We sort on ilabel; since the lattice is supposed to // be deterministic, this should completely determine the ordering (there // should not be more than one arc with the same ilabel, out of the same // state). For identical ilabels we next sort on the nextstate, simply to // better handle non-deterministic input (we do our best on this, without // guaranteeing full minimization). We could sort on the strings next, but // this would be an unnecessary hassle as we only really need good // performance on deterministic input. bool operator () (const CompactArc &a, const CompactArc &b) const { if (a.ilabel < b.ilabel) return true; else if (a.ilabel > b.ilabel) return false; else if (a.nextstate < b.nextstate) return true; else return false; } }; // This function works out whether s and t are equivalent, assuming // we have already partitioned all topologically-later states into // equivalence classes (i.e. set up state_map_). bool Equivalent(StateId s, StateId t) const { if (!ApproxEqual(clat_->Final(s), clat_->Final(t), delta_)) return false; if (clat_->NumArcs(s) != clat_->NumArcs(t)) return false; std::vector<CompactArc> s_arcs; std::vector<CompactArc> t_arcs; for (int32 iter = 0; iter <= 1; iter++) { StateId state = (iter == 0 ? s : t); std::vector<CompactArc> &arcs = (iter == 0 ? s_arcs : t_arcs); arcs.reserve(clat_->NumArcs(s)); for (ArcIterator<MutableFst<CompactArc> > aiter(*clat_, state); !aiter.Done(); aiter.Next()) { CompactArc arc = aiter.Value(); if (arc.nextstate == state) { // This is a special case for states that have self-loops. If two // states have an identical self-loop arc, they may be equivalent. arc.nextstate = kNoStateId; } else { KALDI_ASSERT(arc.nextstate > state); //while (state_map_[arc.nextstate] != arc.nextstate) arc.nextstate = state_map_[arc.nextstate]; arcs.push_back(arc); } } EquivalenceSorter s; std::sort(arcs.begin(), arcs.end(), s); } KALDI_ASSERT(s_arcs.size() == t_arcs.size()); for (size_t i = 0; i < s_arcs.size(); i++) { if (s_arcs[i].nextstate != t_arcs[i].nextstate) return false; KALDI_ASSERT(s_arcs[i].ilabel == s_arcs[i].olabel); // CompactLattices are // supposed to be // acceptors. if (s_arcs[i].ilabel != t_arcs[i].ilabel) return false; // We've already mapped to equivalence classes. if (s_arcs[i].nextstate != t_arcs[i].nextstate) return false; if (!ApproxEqual(s_arcs[i].weight, t_arcs[i].weight)) return false; } return true; } void ComputeStateMap() { // We have to compute the state mapping in reverse topological order also, // since the equivalence test relies on later states being already sorted // out into equivalence classes (by state_map_). StateId num_states = clat_->NumStates(); unordered_map<HashType, std::vector<StateId> > hash_groups_; for (StateId s = 0; s < num_states; s++) hash_groups_[state_hashes_[s]].push_back(s); state_map_.resize(num_states); for (StateId s = 0; s < num_states; s++) state_map_[s] = s; // Default mapping. { // This block is just diagnostic. typedef typename unordered_map<HashType, std::vector<StateId> >::const_iterator HashIter; size_t max_size = 0; for (HashIter iter = hash_groups_.begin(); iter != hash_groups_.end(); ++iter) max_size = std::max(max_size, iter->second.size()); if (max_size > 1000) { KALDI_WARN << "Largest equivalence group (using hash) is " << max_size << ", minimization might be slow."; } } for (StateId s = num_states - 1; s >= 0; s--) { HashType hash = state_hashes_[s]; const std::vector<StateId> &equivalence_class = hash_groups_[hash]; KALDI_ASSERT(!equivalence_class.empty()); for (size_t i = 0; i < equivalence_class.size(); i++) { StateId t = equivalence_class[i]; // Below, there is no point doing the test if state_map_[t] != t, because // in that case we will, before after this, be comparing with another state // that is equivalent to t. if (t > s && state_map_[t] == t && Equivalent(s, t)) { state_map_[s] = t; break; } } } } void ModifyModel() { // Modifies the model according to state_map_; StateId num_removed = 0; StateId num_states = clat_->NumStates(); for (StateId s = 0; s < num_states; s++) if (state_map_[s] != s) num_removed++; KALDI_VLOG(3) << "Removing " << num_removed << " of " << num_states << " states."; if (num_removed == 0) return; // Nothing to do. clat_->SetStart(state_map_[clat_->Start()]); for (StateId s = 0; s < num_states; s++) { if (state_map_[s] != s) continue; // There is no point modifying states we're removing. for (MutableArcIterator<MutableFst<CompactArc> > aiter(clat_, s); !aiter.Done(); aiter.Next()) { CompactArc arc = aiter.Value(); StateId mapped_nextstate = state_map_[arc.nextstate]; if (mapped_nextstate != arc.nextstate) { arc.nextstate = mapped_nextstate; aiter.SetValue(arc); } } } fst::Connect(clat_); } private: MutableFst<ArcTpl<CompactLatticeWeightTpl<Weight, IntType> > > *clat_; float delta_; std::vector<HashType> state_hashes_; std::vector<StateId> state_map_; // maps each state to itself or to some // equivalent state. Within each equivalence // class, we pick one arbitrarily. }; template<class Weight, class IntType> bool MinimizeCompactLattice( MutableFst<ArcTpl<CompactLatticeWeightTpl<Weight, IntType> > > *clat, float delta) { CompactLatticeMinimizer<Weight, IntType> minimizer(clat, delta); return minimizer.Minimize(); } // Instantiate for CompactLattice type. template bool MinimizeCompactLattice<kaldi::LatticeWeight, kaldi::int32>( MutableFst<kaldi::CompactLatticeArc> *clat, float delta); } // namespace fst |