minimize-lattice.cc
11.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// lat/minimize-lattice.cc
// Copyright 2009-2011 Saarland University (Author: Arnab Ghoshal)
// 2012-2013 Johns Hopkins University (Author: Daniel Povey); Chao Weng;
// Bagher BabaAli
// 2014 Guoguo Chen
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "lat/minimize-lattice.h"
#include "hmm/transition-model.h"
#include "util/stl-utils.h"
namespace fst {
/*
Process the states in reverse topological order.
For each state, compute a hash-value that will be the same for states
that can be combined. Then for each pair of states with the
same hash value, check that the "to-states" map to the
same equivalence class and that the weights are sufficiently similar.
*/
template<class Weight, class IntType> class CompactLatticeMinimizer {
public:
typedef CompactLatticeWeightTpl<Weight, IntType> CompactWeight;
typedef ArcTpl<CompactWeight> CompactArc;
typedef typename CompactArc::StateId StateId;
typedef typename CompactArc::Label Label;
typedef size_t HashType;
CompactLatticeMinimizer(MutableFst<CompactArc> *clat,
float delta = fst::kDelta):
clat_(clat), delta_(delta) { }
bool Minimize() {
if (clat_->Properties(kTopSorted, true) == 0) {
if (!TopSort(clat_)) {
KALDI_WARN << "Topological sorting of state-level lattice failed "
"(probably your lexicon has empty words or your LM has epsilon cycles; this "
" is a bad idea.)";
return false;
}
}
ComputeStateHashValues();
ComputeStateMap();
ModifyModel();
return true;
}
static HashType ConvertStringToHashValue(const std::vector<IntType> &vec) {
const HashType prime = 53281;
kaldi::VectorHasher<IntType> h;
HashType ans = static_cast<HashType>(h(vec));
if (ans == 0) ans = prime;
// We don't allow a zero answer, as this can cause too many values to be the
// same.
return ans;
}
static void InitHashValue(const CompactWeight &final_weight, HashType *h) {
const HashType prime1 = 33317, prime2 = 607; // it's pretty random.
if (final_weight == CompactWeight::Zero()) *h = prime1;
else *h = prime2 * ConvertStringToHashValue(final_weight.String());
}
// It's important that this function and UpdateHashValueForFinalProb be
// insensitive to the order in which it's called, as the order of the arcs
// won't necessarily be the same for different equivalent states.
static void UpdateHashValueForTransition(const CompactWeight &weight,
Label label,
HashType &next_state_hash,
HashType *h) {
const HashType prime1 = 1447, prime2 = 51907;
if (label == 0) label = prime2; // Zeros will cause problems.
*h += prime1 * label *
(1 + ConvertStringToHashValue(weight.String()) * next_state_hash);
// Above, the "1 +" is to ensure that if somehow we get zeros due to
// weird word sequences, they don't propagate.
}
void ComputeStateHashValues() {
// Note: clat_ is topologically sorted, and StateId is
// signed. Each state's hash value is only a function of toplogically-later
// states' hash values.
state_hashes_.resize(clat_->NumStates());
for (StateId s = clat_->NumStates() - 1; s >= 0; s--) {
HashType this_hash;
InitHashValue(clat_->Final(s), &this_hash);
for (ArcIterator<MutableFst<CompactArc> > aiter(*clat_, s);
!aiter.Done(); aiter.Next()) {
const CompactArc &arc = aiter.Value();
HashType next_hash;
if (arc.nextstate > s) {
next_hash = state_hashes_[arc.nextstate];
} else {
KALDI_ASSERT(s == arc.nextstate &&
"Lattice not topologically sorted [code error]");
next_hash = 1;
KALDI_WARN << "Minimizing lattice with self-loops "
"(lattices should not have self-loops)";
}
UpdateHashValueForTransition(arc.weight, arc.ilabel,
next_hash, &this_hash);
}
state_hashes_[s] = this_hash;
}
}
struct EquivalenceSorter {
// This struct has an operator () which you can interpret as a less-than (<)
// operator for arcs. We sort on ilabel; since the lattice is supposed to
// be deterministic, this should completely determine the ordering (there
// should not be more than one arc with the same ilabel, out of the same
// state). For identical ilabels we next sort on the nextstate, simply to
// better handle non-deterministic input (we do our best on this, without
// guaranteeing full minimization). We could sort on the strings next, but
// this would be an unnecessary hassle as we only really need good
// performance on deterministic input.
bool operator () (const CompactArc &a, const CompactArc &b) const {
if (a.ilabel < b.ilabel) return true;
else if (a.ilabel > b.ilabel) return false;
else if (a.nextstate < b.nextstate) return true;
else return false;
}
};
// This function works out whether s and t are equivalent, assuming
// we have already partitioned all topologically-later states into
// equivalence classes (i.e. set up state_map_).
bool Equivalent(StateId s, StateId t) const {
if (!ApproxEqual(clat_->Final(s), clat_->Final(t), delta_))
return false;
if (clat_->NumArcs(s) != clat_->NumArcs(t))
return false;
std::vector<CompactArc> s_arcs;
std::vector<CompactArc> t_arcs;
for (int32 iter = 0; iter <= 1; iter++) {
StateId state = (iter == 0 ? s : t);
std::vector<CompactArc> &arcs = (iter == 0 ? s_arcs : t_arcs);
arcs.reserve(clat_->NumArcs(s));
for (ArcIterator<MutableFst<CompactArc> > aiter(*clat_, state);
!aiter.Done(); aiter.Next()) {
CompactArc arc = aiter.Value();
if (arc.nextstate == state) {
// This is a special case for states that have self-loops. If two
// states have an identical self-loop arc, they may be equivalent.
arc.nextstate = kNoStateId;
} else {
KALDI_ASSERT(arc.nextstate > state);
//while (state_map_[arc.nextstate] != arc.nextstate)
arc.nextstate = state_map_[arc.nextstate];
arcs.push_back(arc);
}
}
EquivalenceSorter s;
std::sort(arcs.begin(), arcs.end(), s);
}
KALDI_ASSERT(s_arcs.size() == t_arcs.size());
for (size_t i = 0; i < s_arcs.size(); i++) {
if (s_arcs[i].nextstate != t_arcs[i].nextstate) return false;
KALDI_ASSERT(s_arcs[i].ilabel == s_arcs[i].olabel); // CompactLattices are
// supposed to be
// acceptors.
if (s_arcs[i].ilabel != t_arcs[i].ilabel) return false;
// We've already mapped to equivalence classes.
if (s_arcs[i].nextstate != t_arcs[i].nextstate) return false;
if (!ApproxEqual(s_arcs[i].weight, t_arcs[i].weight)) return false;
}
return true;
}
void ComputeStateMap() {
// We have to compute the state mapping in reverse topological order also,
// since the equivalence test relies on later states being already sorted
// out into equivalence classes (by state_map_).
StateId num_states = clat_->NumStates();
unordered_map<HashType, std::vector<StateId> > hash_groups_;
for (StateId s = 0; s < num_states; s++)
hash_groups_[state_hashes_[s]].push_back(s);
state_map_.resize(num_states);
for (StateId s = 0; s < num_states; s++)
state_map_[s] = s; // Default mapping.
{ // This block is just diagnostic.
typedef typename unordered_map<HashType,
std::vector<StateId> >::const_iterator HashIter;
size_t max_size = 0;
for (HashIter iter = hash_groups_.begin(); iter != hash_groups_.end();
++iter)
max_size = std::max(max_size, iter->second.size());
if (max_size > 1000) {
KALDI_WARN << "Largest equivalence group (using hash) is " << max_size
<< ", minimization might be slow.";
}
}
for (StateId s = num_states - 1; s >= 0; s--) {
HashType hash = state_hashes_[s];
const std::vector<StateId> &equivalence_class = hash_groups_[hash];
KALDI_ASSERT(!equivalence_class.empty());
for (size_t i = 0; i < equivalence_class.size(); i++) {
StateId t = equivalence_class[i];
// Below, there is no point doing the test if state_map_[t] != t, because
// in that case we will, before after this, be comparing with another state
// that is equivalent to t.
if (t > s && state_map_[t] == t && Equivalent(s, t)) {
state_map_[s] = t;
break;
}
}
}
}
void ModifyModel() {
// Modifies the model according to state_map_;
StateId num_removed = 0;
StateId num_states = clat_->NumStates();
for (StateId s = 0; s < num_states; s++)
if (state_map_[s] != s)
num_removed++;
KALDI_VLOG(3) << "Removing " << num_removed << " of "
<< num_states << " states.";
if (num_removed == 0) return; // Nothing to do.
clat_->SetStart(state_map_[clat_->Start()]);
for (StateId s = 0; s < num_states; s++) {
if (state_map_[s] != s)
continue; // There is no point modifying states we're removing.
for (MutableArcIterator<MutableFst<CompactArc> > aiter(clat_, s);
!aiter.Done(); aiter.Next()) {
CompactArc arc = aiter.Value();
StateId mapped_nextstate = state_map_[arc.nextstate];
if (mapped_nextstate != arc.nextstate) {
arc.nextstate = mapped_nextstate;
aiter.SetValue(arc);
}
}
}
fst::Connect(clat_);
}
private:
MutableFst<ArcTpl<CompactLatticeWeightTpl<Weight, IntType> > > *clat_;
float delta_;
std::vector<HashType> state_hashes_;
std::vector<StateId> state_map_; // maps each state to itself or to some
// equivalent state. Within each equivalence
// class, we pick one arbitrarily.
};
template<class Weight, class IntType>
bool MinimizeCompactLattice(
MutableFst<ArcTpl<CompactLatticeWeightTpl<Weight, IntType> > > *clat,
float delta) {
CompactLatticeMinimizer<Weight, IntType> minimizer(clat, delta);
return minimizer.Minimize();
}
// Instantiate for CompactLattice type.
template
bool MinimizeCompactLattice<kaldi::LatticeWeight, kaldi::int32>(
MutableFst<kaldi::CompactLatticeArc> *clat, float delta);
} // namespace fst