Blame view

src/matrix/qr.cc 22.6 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
  // matrix/qr.cc
  
  // Copyright 2012  Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  
  //  http://www.apache.org/licenses/LICENSE-2.0
  
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <limits>
  
  #include "matrix/sp-matrix.h"
  #include "matrix/kaldi-vector.h"
  #include "matrix/kaldi-matrix.h"
  #include "matrix/matrix-functions.h"
  #include "matrix/cblas-wrappers.h"
  
  // This file contains an implementation of the Symmetric QR Algorithm
  // for the symmetric eigenvalue problem.  See Golub and Van Loan,
  // 3rd ed., Algorithm 8.3.3.
  
  namespace kaldi {
  
  
  /* This is from Golub and Van Loan 3rd ed., sec. 5.1.3,
     p210.
     x is the input of dimenson 'dim', v is the output of dimension
     dim, and beta is a scalar. Note: we use zero-based
     not one-based indexing. */
  /*
  // We are commenting out the function below ("House") because it's not
  // needed, but we keep it just to show how we came up with HouseBackward.
  template<typename Real>
  void House(MatrixIndexT dim, const Real *x, Real *v, Real *beta) {
    KALDI_ASSERT(dim > 0);
    // To avoid overflow, we first compute the max of x_ (or
    // one if that's zero, and we'll replace "x" by x/max(x_i)
    // below.  The householder vector is anyway invariant to
    // the magnitude of x.  We could actually avoid this extra loop
    // over x if we wanted to be a bit smarter, but anyway this
    // doesn't dominate the O(N) performance of the algorithm.
    Real s; // s is a scale on x.
    {
      Real max_x = std::numeric_limits<Real>::min();
      for (MatrixIndexT i = 0; i < dim; i++)
        max_x = std::max(max_x, (x[i] < 0 ? -x[i] : x[i]));
      if (max_x == 0.0) max_x = 1.0;
      s = 1.0 / max_x;
    }
    
    Real sigma = 0.0;
    v[0] = 1.0;
    for (MatrixIndexT i = 1; i < dim; i++) {
      sigma += (x[i]*s) * (x[i]*s);
      v[i] = x[i]*s;
    }
    if (sigma == 0.0) *beta = 0.0;
    else {
      // When we say x1 = x[0], we reference the one-based indexing
      // in Golub and Van Loan.
      Real x1 = x[0] * s, mu = std::sqrt(x1*x1 + sigma);
      if (x1 <= 0) {
        v[0] = x1 - mu;
      } else {
        v[0] = -sigma / (x1 + mu);
        KALDI_ASSERT(KALDI_ISFINITE(v[dim-1]));      
      }
      Real v1 = v[0];
      Real v1sq = v1 * v1;
      *beta = 2 * v1sq / (sigma + v1sq);
      Real inv_v1 = 1.0 / v1;
      if (KALDI_ISINF(inv_v1)) {
        // can happen if v1 is denormal.
        KALDI_ASSERT(v1 == v1 && v1 != 0.0);
        for (MatrixIndexT i = 0; i < dim; i++) v[i] /= v1;
      } else {
        cblas_Xscal(dim, inv_v1, v, 1);
      }
      if (KALDI_ISNAN(inv_v1)) {
        KALDI_ERR << "NaN encountered in HouseBackward";
      }
    }
  }
  */
  
  // This is a backward version of the "House" routine above:
  // backward because it's the last index, not the first index of
  // the vector that is "special".  This is convenient in
  // the Tridiagonalize routine that uses reversed indexes for
  // compatibility with the packed lower triangular format.
  template<typename Real>
  void HouseBackward(MatrixIndexT dim, const Real *x, Real *v, Real *beta) {
    KALDI_ASSERT(dim > 0);
    // To avoid overflow, we first compute the max of x_ (or
    // one if that's zero, and we'll replace "x" by x/max(x_i)
    // below.  The householder vector is anyway invariant to
    // the magnitude of x.  We could actually avoid this extra loop
    // over x if we wanted to be a bit smarter, but anyway this
    // doesn't dominate the O(N) performance of the algorithm.
    Real s; // s is a scale on x.
    {
      Real max_x = std::numeric_limits<Real>::min();
      for (MatrixIndexT i = 0; i < dim; i++)
        max_x = std::max(max_x, (x[i] < 0 ? -x[i] : x[i]));
      s = 1.0 / max_x;
    }
    Real sigma = 0.0;
    v[dim-1] = 1.0;
    for (MatrixIndexT i = 0; i + 1  < dim; i++) {
      sigma += (x[i] * s) * (x[i] * s);
      v[i] = x[i] * s;
    }
    KALDI_ASSERT(KALDI_ISFINITE(sigma) &&
                 "Tridiagonalizing matrix that is too large or has NaNs.");
    if (sigma == 0.0) *beta = 0.0;
    else {
      Real x1 = x[dim-1] * s, mu = std::sqrt(x1 * x1 + sigma);
      if (x1 <= 0) {
        v[dim-1] = x1 - mu;
      } else {
        v[dim-1] = -sigma / (x1 + mu);
        KALDI_ASSERT(KALDI_ISFINITE(v[dim-1]));
      }
      Real v1 = v[dim-1];
      Real v1sq = v1 * v1;
      *beta = 2 * v1sq / (sigma + v1sq);
      Real inv_v1 = 1.0 / v1;
      if (KALDI_ISINF(inv_v1)) {
        // can happen if v1 is denormal.
        KALDI_ASSERT(v1 == v1 && v1 != 0.0);
        for (MatrixIndexT i = 0; i < dim; i++) v[i] /= v1;
      } else {
        cblas_Xscal(dim, inv_v1, v, 1);
      }
      if (KALDI_ISNAN(inv_v1)) {
        KALDI_ERR << "NaN encountered in HouseBackward";
      }
    }
  }
  
  
  /**
     This routine tridiagonalizes *this.  C.f. Golub and Van Loan 3rd ed., sec.
     8.3.1 (p415).  We reverse the order of the indices as it's more natural
     with packed lower-triangular matrices to do it this way.  There's also
     a shift from one-based to zero-based indexing, so the index
     k is transformed k -> n - k, and a corresponding transpose...
     
     Let the original *this be A.  This algorithms replaces *this with
     a tridiagonal matrix T such that T = Q A Q^T for an orthogonal Q.
     Caution: Q is transposed vs. Golub and Van Loan.
     If Q != NULL it outputs Q. 
  */
  template<typename Real>
  void SpMatrix<Real>::Tridiagonalize(MatrixBase<Real> *Q) {
    MatrixIndexT n = this->NumRows();
    KALDI_ASSERT(Q == NULL || (Q->NumRows() == n &&
                               Q->NumCols() == n));
    if (Q != NULL) Q->SetUnit();
    Real *data = this->Data();
    Real *qdata = (Q == NULL ? NULL : Q->Data());
    MatrixIndexT qstride = (Q == NULL ? 0 : Q->Stride());
    Vector<Real> tmp_v(n-1), tmp_p(n);
    Real beta, *v = tmp_v.Data(), *p = tmp_p.Data(), *w = p, *x = p;
    for (MatrixIndexT k = n-1; k >= 2; k--) {
      MatrixIndexT ksize = ((k+1)*k)/2;
      // ksize is the packed size of the lower-triangular matrix of size k,
      // which is the size of "all rows previous to this one."
      Real *Arow = data + ksize; // In Golub+Van Loan it was A(k+1:n, k), we
      // have Arow = A(k, 0:k-1).
      HouseBackward(k, Arow, v, &beta); // sets v and beta.
      cblas_Xspmv(k, beta, data, v, 1, 0.0, p, 1); // p = beta * A(0:k-1,0:k-1) v
      Real minus_half_beta_pv = -0.5 * beta * cblas_Xdot(k, p, 1, v, 1);
      cblas_Xaxpy(k, minus_half_beta_pv, v, 1, w, 1); // w = p - (beta p^T v/2) v;
      // this relies on the fact that w and p are the same pointer.
      // We're doing A(k, k-1) = ||Arow||.  It happens that this element
      // is indexed at ksize + k - 1 in the packed lower-triangular format.
      data[ksize + k - 1] = std::sqrt(cblas_Xdot(k, Arow, 1, Arow, 1));
      for (MatrixIndexT i = 0; i + 1 < k; i++)
        data[ksize + i] = 0; // This is not in Golub and Van Loan but is
      // necessary if we're not using parts of A to store the Householder
      // vectors.
      // We're doing A(0:k-1,0:k-1) -= (v w' + w v')
      cblas_Xspr2(k, -1.0, v, 1, w, 1, data);
      if (Q != NULL) { // C.f. Golub, Q is H_1 .. H_n-2... in this
        // case we apply them in the opposite order so it's H_n-1 .. H_1,
        // but also Q is transposed so we really have Q = H_1 .. H_n-1.
        // It's a double negative.    
        // Anyway, we left-multiply Q by each one.  The H_n would each be
        // diag(I + beta v v', I) but we don't ever touch the last dims.
        // We do (in Matlab notation):
        // Q(0:k-1,:) = (I - beta v v') * Q, i.e.:
        // Q(:,0:i-1) += -beta v (v' Q(:,0:k-1)v .. let x = -beta Q(0:k-1,:)^T v.
        cblas_Xgemv(kTrans, k, n, -beta, qdata, qstride, v, 1, 0.0, x, 1);
        // now x = -beta Q(:,0:k-1) v.
        // The next line does: Q(:,0:k-1) += v x'.
        cblas_Xger(k, n, 1.0, v, 1, x, 1, qdata, qstride);
      }
    }
  }
  
  // Instantiate these functions, as it wasn't implemented in sp-matrix.cc
  // where we instantiated the whole class.
  template
  void SpMatrix<float>::Tridiagonalize(MatrixBase<float> *Q);
  template
  void SpMatrix<double>::Tridiagonalize(MatrixBase<double> *Q);
  
  /// Create Givens rotations, as in Golub and Van Loan 3rd ed., page 216.
  template<typename Real>
  inline void Givens(Real a, Real b, Real *c, Real *s) {
    if (b == 0) {
      *c = 1;
      *s = 0;
    } else {
      if (std::abs(b) > std::abs(a)) {
        Real tau = -a / b;
        *s = 1 / std::sqrt(1 + tau*tau);
        *c = *s * tau;
      } else {
        Real tau = -b / a;
        *c = 1 / std::sqrt(1 + tau*tau);
        *s = *c * tau;
      }
    }
  }
  
  
  // Some internal code for the QR algorithm: one "QR step".
  // This is Golub and Van Loan 3rd ed., Algorithm 8.3.2 "Implicit Symmetric QR step
  // with Wilkinson shift."  A couple of differences: this code is
  // in zero based arithmetic, and we represent Q transposed from
  // their Q for memory locality with row-major-indexed matrices.
  template <typename Real>
  void QrStep(MatrixIndexT n,
              Real *diag,
              Real *off_diag,
              MatrixBase<Real> *Q) {
    KALDI_ASSERT(n >= 2);
    // below, "scale" could be any number; we introduce it to keep the
    // floating point quantities within a good range.
    Real   d = (diag[n-2] - diag[n-1]) / 2.0,
        t = off_diag[n-2],
        inv_scale = std::max(std::max(std::abs(d), std::abs(t)),
                             std::numeric_limits<Real>::min()),
        scale = 1.0 / inv_scale,
        d_scaled = d * scale,
        off_diag_n2_scaled = off_diag[n-2] * scale,
        t2_n_n1_scaled = off_diag_n2_scaled * off_diag_n2_scaled,
        sgn_d = (d > 0.0 ? 1.0 : -1.0),
        mu = diag[n-1] - inv_scale * t2_n_n1_scaled /
        (d_scaled + sgn_d * std::sqrt(d_scaled * d_scaled + t2_n_n1_scaled)),
        x = diag[0] - mu,
        z = off_diag[0];
    KALDI_ASSERT(KALDI_ISFINITE(x));
    Real *Qdata = (Q == NULL ? NULL : Q->Data());
    MatrixIndexT Qstride = (Q == NULL ? 0 : Q->Stride()),
        Qcols = (Q == NULL ? 0 : Q->NumCols());
    for (MatrixIndexT k = 0; k < n-1; k++) {
      Real c, s;
      Givens(x, z, &c, &s);
      // Rotate dimensions k and k+1 with the Givens matrix G, as
      // T <== G^T T G.
      // In 2d, a Givens matrix is [ c s; -s c ].  Forget about
      // the dimension-indexing issues and assume we have a 2x2
      // symmetric matrix [ p q ; q r ]
      // We ask our friends at Wolfram Alpha about
      // { { c, -s}, {s, c} } * { {p, q}, {q, r} } * { { c, s}, {-s, c} }
      // Interpreting the result as [ p', q' ; q', r ]
      //    p' = c (c p - s q) - s (c q - s r)
      //    q' = s (c p - s q) + c (c q - s r)
      //    r' = s (s p + c q) + c (s q + c r)
      Real p = diag[k], q = off_diag[k], r = diag[k+1];
      // p is element k,k; r is element k+1,k+1; q is element k,k+1 or k+1,k.
      // We'll let the compiler optimize this.
      diag[k] = c * (c*p - s*q) - s * (c*q - s*r);
      off_diag[k] = s * (c*p - s*q) + c * (c*q - s*r);
      diag[k+1] = s * (s*p + c*q) + c * (s*q + c*r);
  
      // We also have some other elements to think of that
      // got rotated in a simpler way: if k>0,
      // then element (k, k-1) and (k+1, k-1) get rotated.  Here,
      // element k+1, k-1 will be present as z; it's the out-of-band
      // element that we remembered from last time.  This is
      // on the left as it's the row indexes that differ, so think of
      // this as being premultiplied by G^T.  In fact we're multiplying
      // T by in some sense the opposite/transpose of the Givens rotation.
      if (k > 0) { // Note, in rotations, going backward, (x,y) -> ((cx - sy), (sx + cy))
        Real &elem_k_km1 = off_diag[k-1],
            elem_kp1_km1 = z; // , tmp = elem_k_km1;
        elem_k_km1 = c*elem_k_km1 - s*elem_kp1_km1;
        // The next line will set elem_kp1_km1 to zero and we'll never access this
        // value, so we comment it out.
        // elem_kp1_km1 = s*tmp + c*elem_kp1_km1;
      }
      if (Q != NULL)
        cblas_Xrot(Qcols, Qdata + k*Qstride, 1,
                   Qdata + (k+1)*Qstride, 1, c, -s);
      if (k < n-2) {
        // Next is the elements (k+2, k) and (k+2, k-1), to be rotated, again
        // backwards.
        Real &elem_kp2_k = z, 
            &elem_kp2_kp1 = off_diag[k+1];
        // Note: elem_kp2_k == z would start off as zero because it's
         // two off the diagonal, and not been touched yet.  Therefore
        // we eliminate it in expressions below, commenting it out.
        // If we didn't do this we should set it to zero first.
        elem_kp2_k =  - s * elem_kp2_kp1; // + c*elem_kp2_k
        elem_kp2_kp1 =  c * elem_kp2_kp1; // + s*elem_kp2_k (original value).
        // The next part is from the algorithm they describe: x = t_{k+1,k}
        x = off_diag[k];
      }
    }
  }
  
  
  // Internal code for the QR algorithm, where the diagonal
  // and off-diagonal of the symmetric matrix are represented as
  // vectors of length n and n-1.
  template <typename Real>
  void QrInternal(MatrixIndexT n,
                  Real *diag,
                  Real *off_diag,
                  MatrixBase<Real> *Q) {
    KALDI_ASSERT(Q == NULL || Q->NumCols() == n); // We may
    // later relax the condition that Q->NumCols() == n.
  
    MatrixIndexT counter = 0, max_iters = 500 + 4*n, // Should never take this many iters.
        large_iters = 100 + 2*n;
    Real epsilon = (pow(2.0, sizeof(Real) == 4 ? -23.0 : -52.0));
    
    for (; counter < max_iters; counter++) { // this takes the place of "until
                                             // q=n"... we'll break out of the
                                             // loop when we converge.
      if (counter == large_iters ||
          (counter > large_iters && (counter - large_iters) % 50 == 0)) {
        KALDI_WARN << "Took " << counter
                   << " iterations in QR (dim is " << n << "), doubling epsilon.";
        SubVector<Real> d(diag, n), o(off_diag, n-1);
        KALDI_WARN << "Diag, off-diag are " << d << " and " << o;
        epsilon *= 2.0;
      }
      for (MatrixIndexT i = 0; i+1 < n; i++) {
        if (std::abs(off_diag[i]) <= epsilon *
            (std::abs(diag[i]) + std::abs(diag[i+1])))
          off_diag[i] = 0.0;
      }
      // The next code works out p, q, and npq which is n - p - q.
      // For the definitions of q and p, see Golub and Van Loan; we 
      // partition the n dims into pieces of size (p, n-p-q, q) where
      // the part of size q is diagonal and the part of size n-p-p is
      // "unreduced", i.e. has no zero off-diagonal elements.
      MatrixIndexT q = 0;
      // Note: below, "n-q < 2" should more clearly be "n-2-q < 0", but that
      // causes problems if MatrixIndexT is unsigned.
      while (q < n && (n-q < 2 || off_diag[n-2-q] == 0.0))
        q++;
      if (q == n) break; // we're done.  It's diagonal.
      KALDI_ASSERT(n - q >= 2);
      MatrixIndexT npq = 2; // Value of n - p - q, where n - p - q must be
      // unreduced.  This is the size of "middle" band of elements.  If q != n,
      // we must have hit a nonzero off-diag element, so the size of this
      // band must be at least two.
      while (npq + q < n && (n-q-npq-1 < 0 || off_diag[n-q-npq-1] != 0.0))
        npq++;
      MatrixIndexT p = n - q - npq;
      { // Checks.
        for (MatrixIndexT i = 0; i+1 < npq; i++)
          KALDI_ASSERT(off_diag[p + i] != 0.0);
        for (MatrixIndexT i = 0; i+1 < q; i++)
          KALDI_ASSERT(off_diag[p + npq - 1 + i] == 0.0);
        if (p > 1) // Something must have stopped npq from growing further..
          KALDI_ASSERT(off_diag[p-1] == 0.0); // so last off-diag elem in
        // group of size p must be zero.
      }
  
      if (Q != NULL) {
        // Do one QR step on the middle part of Q only.
        // Qpart will be a subset of the rows of Q.
        SubMatrix<Real> Qpart(*Q, p, npq, 0, Q->NumCols());
        QrStep(npq, diag + p, off_diag + p, &Qpart);
      } else {
        QrStep(npq, diag + p, off_diag + p,
               static_cast<MatrixBase<Real>*>(NULL));
      }      
    }
    if (counter == max_iters) {
      KALDI_WARN << "Failure to converge in QR algorithm. "
                 << "Exiting with partial output.";
    }
  }
  
  
  /**
     This is the symmetric QR algorithm, from Golub and Van Loan 3rd ed., Algorithm
     8.3.3.  Q is transposed w.r.t. there, though.
  */
  template <typename Real>
  void SpMatrix<Real>::Qr(MatrixBase<Real> *Q) {
    KALDI_ASSERT(this->IsTridiagonal());
    // We envisage that Q would be square but we don't check for this,
    // as there are situations where you might not want this.
    KALDI_ASSERT(Q == NULL || Q->NumRows() == this->NumRows());
    // Note: the first couple of lines of the algorithm they give would be done
    // outside of this function, by calling Tridiagonalize().
  
    MatrixIndexT n = this->NumRows();
    Vector<Real> diag(n), off_diag(n-1);
    for (MatrixIndexT i = 0; i < n; i++) {
      diag(i) = (*this)(i, i);
      if (i > 0) off_diag(i-1) = (*this)(i, i-1);
    }
    QrInternal(n, diag.Data(), off_diag.Data(), Q);
    // Now set *this to the value represented by diag and off_diag.
    this->SetZero();
    for (MatrixIndexT i = 0; i < n; i++) {
      (*this)(i, i) = diag(i);
      if (i > 0) (*this)(i, i-1) = off_diag(i-1);
    }
  }
  
  template<typename Real>
  void SpMatrix<Real>::Eig(VectorBase<Real> *s, MatrixBase<Real> *P) const {
    MatrixIndexT dim = this->NumRows();
    KALDI_ASSERT(s->Dim() == dim);
    KALDI_ASSERT(P == NULL || (P->NumRows() == dim && P->NumCols() == dim));
  
    SpMatrix<Real> A(*this); // Copy *this, since the tridiagonalization
    // and QR decomposition are destructive.
    // Note: for efficiency of memory access, the tridiagonalization
    // algorithm makes the *rows* of P the eigenvectors, not the columns.
    // We'll transpose P before we exit.
    // Also note: P may be null if you don't want the eigenvectors.  This
    // will make this function more efficient.
  
    A.Tridiagonalize(P); // Tridiagonalizes.
    A.Qr(P); // Diagonalizes.
    if(P) P->Transpose();
    s->CopyDiagFromPacked(A);
  }
  
  
  template<typename Real>
  void SpMatrix<Real>::TopEigs(VectorBase<Real> *s, MatrixBase<Real> *P,
                               MatrixIndexT lanczos_dim) const {
    const SpMatrix<Real> &S(*this); // call this "S" for easy notation.
    MatrixIndexT eig_dim = s->Dim(); // Space of dim we want to retain.
    if (lanczos_dim <= 0)
      lanczos_dim = std::max(eig_dim + 50, eig_dim + eig_dim/2);
    MatrixIndexT dim = this->NumRows();
    if (lanczos_dim >= dim) {
      // There would be no speed advantage in using this method, so just
      // use the regular approach.
      Vector<Real> s_tmp(dim);
      Matrix<Real> P_tmp(dim, dim);
      this->Eig(&s_tmp, &P_tmp);
      SortSvd(&s_tmp, &P_tmp);
      s->CopyFromVec(s_tmp.Range(0, eig_dim));
      P->CopyFromMat(P_tmp.Range(0, dim, 0, eig_dim));
      return;
    }
    KALDI_ASSERT(eig_dim <= dim && eig_dim > 0);
    KALDI_ASSERT(P->NumRows() == dim && P->NumCols() == eig_dim); // each column
    // is one eigenvector.
  
    Matrix<Real> Q(lanczos_dim, dim); // The rows of Q will be the
    // orthogonal vectors of the Krylov subspace.
  
    SpMatrix<Real> T(lanczos_dim); // This will be equal to Q S Q^T,
    // i.e. *this projected into the Krylov subspace.  Note: only the
    // diagonal and off-diagonal fo T are nonzero, i.e. it's tridiagonal,
    // but we don't have access to the low-level algorithms that work
    // on that type of matrix (since we want to use ATLAS).  So we just
    // do normal SVD, on a full matrix; it won't typically dominate.
  
    Q.Row(0).SetRandn();
    Q.Row(0).Scale(1.0 / Q.Row(0).Norm(2));
    for (MatrixIndexT d = 0; d < lanczos_dim; d++) {
      Vector<Real> r(dim);
      r.AddSpVec(1.0, S, Q.Row(d), 0.0);
      // r = S * q_d
      MatrixIndexT counter = 0;
      Real end_prod;
      while (1) { // Normally we'll do this loop only once:
        // we repeat to handle cases where r gets very much smaller
        // and we want to orthogonalize again.
        // We do "full orthogonalization" to preserve stability,
        // even though this is usually a waste of time.
        Real start_prod = VecVec(r, r);
        for (SignedMatrixIndexT e = d; e >= 0; e--) { // e must be signed!
          SubVector<Real> q_e(Q, e);
          Real prod = VecVec(r, q_e);
          if (counter == 0 && static_cast<MatrixIndexT>(e) + 1 >= d) // Keep T tridiagonal, which
            T(d, e) = prod; // mathematically speaking, it is.
          r.AddVec(-prod, q_e); // Subtract component in q_e.
        }
        if (d+1 == lanczos_dim) break;
        end_prod = VecVec(r, r);
        if (end_prod <= 0.1 * start_prod) {
          // also handles case where both are 0.
          // We're not confident any more that it's completely
          // orthogonal to the rest so we want to re-do.
          if (end_prod == 0.0)
            r.SetRandn(); // "Restarting".
          counter++;
          if (counter > 100)
            KALDI_ERR << "Loop detected in Lanczos iteration.";
        } else {
          break;
        }
      }
      if (d+1 != lanczos_dim) {
        // OK, at this point we're satisfied that r is orthogonal
        // to all previous rows.
        KALDI_ASSERT(end_prod != 0.0); // should have looped.
        r.Scale(1.0 / std::sqrt(end_prod)); // make it unit.
        Q.Row(d+1).CopyFromVec(r);
      }
    }
  
    Matrix<Real> R(lanczos_dim, lanczos_dim);  
    R.SetUnit();
    T.Qr(&R); // Diagonalizes T.
    Vector<Real> s_tmp(lanczos_dim);
    s_tmp.CopyDiagFromSp(T);  
  
    // Now T = R * diag(s_tmp) * R^T.
    // The next call sorts the elements of s from greatest to least absolute value,
    // and moves around the rows of R in the corresponding way.  This picks out
    // the largest (absolute) eigenvalues.
    SortSvd(&s_tmp, static_cast<Matrix<Real>*>(NULL), &R);
    // Keep only the initial rows of R, those corresponding to greatest (absolute)
    // eigenvalues.
    SubMatrix<Real> Rsub(R, 0, eig_dim, 0, lanczos_dim);
    SubVector<Real> s_sub(s_tmp, 0, eig_dim);
    s->CopyFromVec(s_sub);
        
    // For working out what to do now, just assume the other eigenvalues were
    // zero.  This is just for purposes of knowing how to get the result, and
    // not getting things wrongly transposed.
    // We have T = Rsub^T * diag(s_sub) * Rsub.
    // Now, T = Q S Q^T, with Q orthogonal,  so S = Q^T T Q = Q^T Rsub^T * diag(s) * Rsub * Q.
    // The output is P and we want S = P * diag(s) * P^T, so we need P = Q^T Rsub^T.
    P->AddMatMat(1.0, Q, kTrans, Rsub, kTrans, 0.0);
  }
  
  
  // Instantiate the templates for Eig and TopEig.
  template
  void SpMatrix<float>::Eig(VectorBase<float>*, MatrixBase<float>*) const;
  template
  void SpMatrix<double>::Eig(VectorBase<double>*, MatrixBase<double>*) const;
  
  template
  void SpMatrix<float>::TopEigs(VectorBase<float>*, MatrixBase<float>*, MatrixIndexT) const;
  template
  void SpMatrix<double>::TopEigs(VectorBase<double>*, MatrixBase<double>*, MatrixIndexT) const;
  
  // Someone had a problem with the Intel compiler with -O3, with Qr not being
  // defined for some strange reason (should automatically happen when
  // we instantiate Eig and TopEigs), so we explicitly instantiate it here.
  template
  void SpMatrix<float>::Qr(MatrixBase<float> *Q);
  template
  void SpMatrix<double>::Qr(MatrixBase<double> *Q);
  
  
  
  }
  // namespace kaldi