qr.cc 22.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
// matrix/qr.cc

// Copyright 2012  Johns Hopkins University (author: Daniel Povey)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at

//  http://www.apache.org/licenses/LICENSE-2.0

// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include <limits>

#include "matrix/sp-matrix.h"
#include "matrix/kaldi-vector.h"
#include "matrix/kaldi-matrix.h"
#include "matrix/matrix-functions.h"
#include "matrix/cblas-wrappers.h"

// This file contains an implementation of the Symmetric QR Algorithm
// for the symmetric eigenvalue problem.  See Golub and Van Loan,
// 3rd ed., Algorithm 8.3.3.

namespace kaldi {


/* This is from Golub and Van Loan 3rd ed., sec. 5.1.3,
   p210.
   x is the input of dimenson 'dim', v is the output of dimension
   dim, and beta is a scalar. Note: we use zero-based
   not one-based indexing. */
/*
// We are commenting out the function below ("House") because it's not
// needed, but we keep it just to show how we came up with HouseBackward.
template<typename Real>
void House(MatrixIndexT dim, const Real *x, Real *v, Real *beta) {
  KALDI_ASSERT(dim > 0);
  // To avoid overflow, we first compute the max of x_ (or
  // one if that's zero, and we'll replace "x" by x/max(x_i)
  // below.  The householder vector is anyway invariant to
  // the magnitude of x.  We could actually avoid this extra loop
  // over x if we wanted to be a bit smarter, but anyway this
  // doesn't dominate the O(N) performance of the algorithm.
  Real s; // s is a scale on x.
  {
    Real max_x = std::numeric_limits<Real>::min();
    for (MatrixIndexT i = 0; i < dim; i++)
      max_x = std::max(max_x, (x[i] < 0 ? -x[i] : x[i]));
    if (max_x == 0.0) max_x = 1.0;
    s = 1.0 / max_x;
  }
  
  Real sigma = 0.0;
  v[0] = 1.0;
  for (MatrixIndexT i = 1; i < dim; i++) {
    sigma += (x[i]*s) * (x[i]*s);
    v[i] = x[i]*s;
  }
  if (sigma == 0.0) *beta = 0.0;
  else {
    // When we say x1 = x[0], we reference the one-based indexing
    // in Golub and Van Loan.
    Real x1 = x[0] * s, mu = std::sqrt(x1*x1 + sigma);
    if (x1 <= 0) {
      v[0] = x1 - mu;
    } else {
      v[0] = -sigma / (x1 + mu);
      KALDI_ASSERT(KALDI_ISFINITE(v[dim-1]));      
    }
    Real v1 = v[0];
    Real v1sq = v1 * v1;
    *beta = 2 * v1sq / (sigma + v1sq);
    Real inv_v1 = 1.0 / v1;
    if (KALDI_ISINF(inv_v1)) {
      // can happen if v1 is denormal.
      KALDI_ASSERT(v1 == v1 && v1 != 0.0);
      for (MatrixIndexT i = 0; i < dim; i++) v[i] /= v1;
    } else {
      cblas_Xscal(dim, inv_v1, v, 1);
    }
    if (KALDI_ISNAN(inv_v1)) {
      KALDI_ERR << "NaN encountered in HouseBackward";
    }
  }
}
*/

// This is a backward version of the "House" routine above:
// backward because it's the last index, not the first index of
// the vector that is "special".  This is convenient in
// the Tridiagonalize routine that uses reversed indexes for
// compatibility with the packed lower triangular format.
template<typename Real>
void HouseBackward(MatrixIndexT dim, const Real *x, Real *v, Real *beta) {
  KALDI_ASSERT(dim > 0);
  // To avoid overflow, we first compute the max of x_ (or
  // one if that's zero, and we'll replace "x" by x/max(x_i)
  // below.  The householder vector is anyway invariant to
  // the magnitude of x.  We could actually avoid this extra loop
  // over x if we wanted to be a bit smarter, but anyway this
  // doesn't dominate the O(N) performance of the algorithm.
  Real s; // s is a scale on x.
  {
    Real max_x = std::numeric_limits<Real>::min();
    for (MatrixIndexT i = 0; i < dim; i++)
      max_x = std::max(max_x, (x[i] < 0 ? -x[i] : x[i]));
    s = 1.0 / max_x;
  }
  Real sigma = 0.0;
  v[dim-1] = 1.0;
  for (MatrixIndexT i = 0; i + 1  < dim; i++) {
    sigma += (x[i] * s) * (x[i] * s);
    v[i] = x[i] * s;
  }
  KALDI_ASSERT(KALDI_ISFINITE(sigma) &&
               "Tridiagonalizing matrix that is too large or has NaNs.");
  if (sigma == 0.0) *beta = 0.0;
  else {
    Real x1 = x[dim-1] * s, mu = std::sqrt(x1 * x1 + sigma);
    if (x1 <= 0) {
      v[dim-1] = x1 - mu;
    } else {
      v[dim-1] = -sigma / (x1 + mu);
      KALDI_ASSERT(KALDI_ISFINITE(v[dim-1]));
    }
    Real v1 = v[dim-1];
    Real v1sq = v1 * v1;
    *beta = 2 * v1sq / (sigma + v1sq);
    Real inv_v1 = 1.0 / v1;
    if (KALDI_ISINF(inv_v1)) {
      // can happen if v1 is denormal.
      KALDI_ASSERT(v1 == v1 && v1 != 0.0);
      for (MatrixIndexT i = 0; i < dim; i++) v[i] /= v1;
    } else {
      cblas_Xscal(dim, inv_v1, v, 1);
    }
    if (KALDI_ISNAN(inv_v1)) {
      KALDI_ERR << "NaN encountered in HouseBackward";
    }
  }
}


/**
   This routine tridiagonalizes *this.  C.f. Golub and Van Loan 3rd ed., sec.
   8.3.1 (p415).  We reverse the order of the indices as it's more natural
   with packed lower-triangular matrices to do it this way.  There's also
   a shift from one-based to zero-based indexing, so the index
   k is transformed k -> n - k, and a corresponding transpose...
   
   Let the original *this be A.  This algorithms replaces *this with
   a tridiagonal matrix T such that T = Q A Q^T for an orthogonal Q.
   Caution: Q is transposed vs. Golub and Van Loan.
   If Q != NULL it outputs Q. 
*/
template<typename Real>
void SpMatrix<Real>::Tridiagonalize(MatrixBase<Real> *Q) {
  MatrixIndexT n = this->NumRows();
  KALDI_ASSERT(Q == NULL || (Q->NumRows() == n &&
                             Q->NumCols() == n));
  if (Q != NULL) Q->SetUnit();
  Real *data = this->Data();
  Real *qdata = (Q == NULL ? NULL : Q->Data());
  MatrixIndexT qstride = (Q == NULL ? 0 : Q->Stride());
  Vector<Real> tmp_v(n-1), tmp_p(n);
  Real beta, *v = tmp_v.Data(), *p = tmp_p.Data(), *w = p, *x = p;
  for (MatrixIndexT k = n-1; k >= 2; k--) {
    MatrixIndexT ksize = ((k+1)*k)/2;
    // ksize is the packed size of the lower-triangular matrix of size k,
    // which is the size of "all rows previous to this one."
    Real *Arow = data + ksize; // In Golub+Van Loan it was A(k+1:n, k), we
    // have Arow = A(k, 0:k-1).
    HouseBackward(k, Arow, v, &beta); // sets v and beta.
    cblas_Xspmv(k, beta, data, v, 1, 0.0, p, 1); // p = beta * A(0:k-1,0:k-1) v
    Real minus_half_beta_pv = -0.5 * beta * cblas_Xdot(k, p, 1, v, 1);
    cblas_Xaxpy(k, minus_half_beta_pv, v, 1, w, 1); // w = p - (beta p^T v/2) v;
    // this relies on the fact that w and p are the same pointer.
    // We're doing A(k, k-1) = ||Arow||.  It happens that this element
    // is indexed at ksize + k - 1 in the packed lower-triangular format.
    data[ksize + k - 1] = std::sqrt(cblas_Xdot(k, Arow, 1, Arow, 1));
    for (MatrixIndexT i = 0; i + 1 < k; i++)
      data[ksize + i] = 0; // This is not in Golub and Van Loan but is
    // necessary if we're not using parts of A to store the Householder
    // vectors.
    // We're doing A(0:k-1,0:k-1) -= (v w' + w v')
    cblas_Xspr2(k, -1.0, v, 1, w, 1, data);
    if (Q != NULL) { // C.f. Golub, Q is H_1 .. H_n-2... in this
      // case we apply them in the opposite order so it's H_n-1 .. H_1,
      // but also Q is transposed so we really have Q = H_1 .. H_n-1.
      // It's a double negative.    
      // Anyway, we left-multiply Q by each one.  The H_n would each be
      // diag(I + beta v v', I) but we don't ever touch the last dims.
      // We do (in Matlab notation):
      // Q(0:k-1,:) = (I - beta v v') * Q, i.e.:
      // Q(:,0:i-1) += -beta v (v' Q(:,0:k-1)v .. let x = -beta Q(0:k-1,:)^T v.
      cblas_Xgemv(kTrans, k, n, -beta, qdata, qstride, v, 1, 0.0, x, 1);
      // now x = -beta Q(:,0:k-1) v.
      // The next line does: Q(:,0:k-1) += v x'.
      cblas_Xger(k, n, 1.0, v, 1, x, 1, qdata, qstride);
    }
  }
}

// Instantiate these functions, as it wasn't implemented in sp-matrix.cc
// where we instantiated the whole class.
template
void SpMatrix<float>::Tridiagonalize(MatrixBase<float> *Q);
template
void SpMatrix<double>::Tridiagonalize(MatrixBase<double> *Q);

/// Create Givens rotations, as in Golub and Van Loan 3rd ed., page 216.
template<typename Real>
inline void Givens(Real a, Real b, Real *c, Real *s) {
  if (b == 0) {
    *c = 1;
    *s = 0;
  } else {
    if (std::abs(b) > std::abs(a)) {
      Real tau = -a / b;
      *s = 1 / std::sqrt(1 + tau*tau);
      *c = *s * tau;
    } else {
      Real tau = -b / a;
      *c = 1 / std::sqrt(1 + tau*tau);
      *s = *c * tau;
    }
  }
}


// Some internal code for the QR algorithm: one "QR step".
// This is Golub and Van Loan 3rd ed., Algorithm 8.3.2 "Implicit Symmetric QR step
// with Wilkinson shift."  A couple of differences: this code is
// in zero based arithmetic, and we represent Q transposed from
// their Q for memory locality with row-major-indexed matrices.
template <typename Real>
void QrStep(MatrixIndexT n,
            Real *diag,
            Real *off_diag,
            MatrixBase<Real> *Q) {
  KALDI_ASSERT(n >= 2);
  // below, "scale" could be any number; we introduce it to keep the
  // floating point quantities within a good range.
  Real   d = (diag[n-2] - diag[n-1]) / 2.0,
      t = off_diag[n-2],
      inv_scale = std::max(std::max(std::abs(d), std::abs(t)),
                           std::numeric_limits<Real>::min()),
      scale = 1.0 / inv_scale,
      d_scaled = d * scale,
      off_diag_n2_scaled = off_diag[n-2] * scale,
      t2_n_n1_scaled = off_diag_n2_scaled * off_diag_n2_scaled,
      sgn_d = (d > 0.0 ? 1.0 : -1.0),
      mu = diag[n-1] - inv_scale * t2_n_n1_scaled /
      (d_scaled + sgn_d * std::sqrt(d_scaled * d_scaled + t2_n_n1_scaled)),
      x = diag[0] - mu,
      z = off_diag[0];
  KALDI_ASSERT(KALDI_ISFINITE(x));
  Real *Qdata = (Q == NULL ? NULL : Q->Data());
  MatrixIndexT Qstride = (Q == NULL ? 0 : Q->Stride()),
      Qcols = (Q == NULL ? 0 : Q->NumCols());
  for (MatrixIndexT k = 0; k < n-1; k++) {
    Real c, s;
    Givens(x, z, &c, &s);
    // Rotate dimensions k and k+1 with the Givens matrix G, as
    // T <== G^T T G.
    // In 2d, a Givens matrix is [ c s; -s c ].  Forget about
    // the dimension-indexing issues and assume we have a 2x2
    // symmetric matrix [ p q ; q r ]
    // We ask our friends at Wolfram Alpha about
    // { { c, -s}, {s, c} } * { {p, q}, {q, r} } * { { c, s}, {-s, c} }
    // Interpreting the result as [ p', q' ; q', r ]
    //    p' = c (c p - s q) - s (c q - s r)
    //    q' = s (c p - s q) + c (c q - s r)
    //    r' = s (s p + c q) + c (s q + c r)
    Real p = diag[k], q = off_diag[k], r = diag[k+1];
    // p is element k,k; r is element k+1,k+1; q is element k,k+1 or k+1,k.
    // We'll let the compiler optimize this.
    diag[k] = c * (c*p - s*q) - s * (c*q - s*r);
    off_diag[k] = s * (c*p - s*q) + c * (c*q - s*r);
    diag[k+1] = s * (s*p + c*q) + c * (s*q + c*r);

    // We also have some other elements to think of that
    // got rotated in a simpler way: if k>0,
    // then element (k, k-1) and (k+1, k-1) get rotated.  Here,
    // element k+1, k-1 will be present as z; it's the out-of-band
    // element that we remembered from last time.  This is
    // on the left as it's the row indexes that differ, so think of
    // this as being premultiplied by G^T.  In fact we're multiplying
    // T by in some sense the opposite/transpose of the Givens rotation.
    if (k > 0) { // Note, in rotations, going backward, (x,y) -> ((cx - sy), (sx + cy))
      Real &elem_k_km1 = off_diag[k-1],
          elem_kp1_km1 = z; // , tmp = elem_k_km1;
      elem_k_km1 = c*elem_k_km1 - s*elem_kp1_km1;
      // The next line will set elem_kp1_km1 to zero and we'll never access this
      // value, so we comment it out.
      // elem_kp1_km1 = s*tmp + c*elem_kp1_km1;
    }
    if (Q != NULL)
      cblas_Xrot(Qcols, Qdata + k*Qstride, 1,
                 Qdata + (k+1)*Qstride, 1, c, -s);
    if (k < n-2) {
      // Next is the elements (k+2, k) and (k+2, k-1), to be rotated, again
      // backwards.
      Real &elem_kp2_k = z, 
          &elem_kp2_kp1 = off_diag[k+1];
      // Note: elem_kp2_k == z would start off as zero because it's
       // two off the diagonal, and not been touched yet.  Therefore
      // we eliminate it in expressions below, commenting it out.
      // If we didn't do this we should set it to zero first.
      elem_kp2_k =  - s * elem_kp2_kp1; // + c*elem_kp2_k
      elem_kp2_kp1 =  c * elem_kp2_kp1; // + s*elem_kp2_k (original value).
      // The next part is from the algorithm they describe: x = t_{k+1,k}
      x = off_diag[k];
    }
  }
}


// Internal code for the QR algorithm, where the diagonal
// and off-diagonal of the symmetric matrix are represented as
// vectors of length n and n-1.
template <typename Real>
void QrInternal(MatrixIndexT n,
                Real *diag,
                Real *off_diag,
                MatrixBase<Real> *Q) {
  KALDI_ASSERT(Q == NULL || Q->NumCols() == n); // We may
  // later relax the condition that Q->NumCols() == n.

  MatrixIndexT counter = 0, max_iters = 500 + 4*n, // Should never take this many iters.
      large_iters = 100 + 2*n;
  Real epsilon = (pow(2.0, sizeof(Real) == 4 ? -23.0 : -52.0));
  
  for (; counter < max_iters; counter++) { // this takes the place of "until
                                           // q=n"... we'll break out of the
                                           // loop when we converge.
    if (counter == large_iters ||
        (counter > large_iters && (counter - large_iters) % 50 == 0)) {
      KALDI_WARN << "Took " << counter
                 << " iterations in QR (dim is " << n << "), doubling epsilon.";
      SubVector<Real> d(diag, n), o(off_diag, n-1);
      KALDI_WARN << "Diag, off-diag are " << d << " and " << o;
      epsilon *= 2.0;
    }
    for (MatrixIndexT i = 0; i+1 < n; i++) {
      if (std::abs(off_diag[i]) <= epsilon *
          (std::abs(diag[i]) + std::abs(diag[i+1])))
        off_diag[i] = 0.0;
    }
    // The next code works out p, q, and npq which is n - p - q.
    // For the definitions of q and p, see Golub and Van Loan; we 
    // partition the n dims into pieces of size (p, n-p-q, q) where
    // the part of size q is diagonal and the part of size n-p-p is
    // "unreduced", i.e. has no zero off-diagonal elements.
    MatrixIndexT q = 0;
    // Note: below, "n-q < 2" should more clearly be "n-2-q < 0", but that
    // causes problems if MatrixIndexT is unsigned.
    while (q < n && (n-q < 2 || off_diag[n-2-q] == 0.0))
      q++;
    if (q == n) break; // we're done.  It's diagonal.
    KALDI_ASSERT(n - q >= 2);
    MatrixIndexT npq = 2; // Value of n - p - q, where n - p - q must be
    // unreduced.  This is the size of "middle" band of elements.  If q != n,
    // we must have hit a nonzero off-diag element, so the size of this
    // band must be at least two.
    while (npq + q < n && (n-q-npq-1 < 0 || off_diag[n-q-npq-1] != 0.0))
      npq++;
    MatrixIndexT p = n - q - npq;
    { // Checks.
      for (MatrixIndexT i = 0; i+1 < npq; i++)
        KALDI_ASSERT(off_diag[p + i] != 0.0);
      for (MatrixIndexT i = 0; i+1 < q; i++)
        KALDI_ASSERT(off_diag[p + npq - 1 + i] == 0.0);
      if (p > 1) // Something must have stopped npq from growing further..
        KALDI_ASSERT(off_diag[p-1] == 0.0); // so last off-diag elem in
      // group of size p must be zero.
    }

    if (Q != NULL) {
      // Do one QR step on the middle part of Q only.
      // Qpart will be a subset of the rows of Q.
      SubMatrix<Real> Qpart(*Q, p, npq, 0, Q->NumCols());
      QrStep(npq, diag + p, off_diag + p, &Qpart);
    } else {
      QrStep(npq, diag + p, off_diag + p,
             static_cast<MatrixBase<Real>*>(NULL));
    }      
  }
  if (counter == max_iters) {
    KALDI_WARN << "Failure to converge in QR algorithm. "
               << "Exiting with partial output.";
  }
}


/**
   This is the symmetric QR algorithm, from Golub and Van Loan 3rd ed., Algorithm
   8.3.3.  Q is transposed w.r.t. there, though.
*/
template <typename Real>
void SpMatrix<Real>::Qr(MatrixBase<Real> *Q) {
  KALDI_ASSERT(this->IsTridiagonal());
  // We envisage that Q would be square but we don't check for this,
  // as there are situations where you might not want this.
  KALDI_ASSERT(Q == NULL || Q->NumRows() == this->NumRows());
  // Note: the first couple of lines of the algorithm they give would be done
  // outside of this function, by calling Tridiagonalize().

  MatrixIndexT n = this->NumRows();
  Vector<Real> diag(n), off_diag(n-1);
  for (MatrixIndexT i = 0; i < n; i++) {
    diag(i) = (*this)(i, i);
    if (i > 0) off_diag(i-1) = (*this)(i, i-1);
  }
  QrInternal(n, diag.Data(), off_diag.Data(), Q);
  // Now set *this to the value represented by diag and off_diag.
  this->SetZero();
  for (MatrixIndexT i = 0; i < n; i++) {
    (*this)(i, i) = diag(i);
    if (i > 0) (*this)(i, i-1) = off_diag(i-1);
  }
}

template<typename Real>
void SpMatrix<Real>::Eig(VectorBase<Real> *s, MatrixBase<Real> *P) const {
  MatrixIndexT dim = this->NumRows();
  KALDI_ASSERT(s->Dim() == dim);
  KALDI_ASSERT(P == NULL || (P->NumRows() == dim && P->NumCols() == dim));

  SpMatrix<Real> A(*this); // Copy *this, since the tridiagonalization
  // and QR decomposition are destructive.
  // Note: for efficiency of memory access, the tridiagonalization
  // algorithm makes the *rows* of P the eigenvectors, not the columns.
  // We'll transpose P before we exit.
  // Also note: P may be null if you don't want the eigenvectors.  This
  // will make this function more efficient.

  A.Tridiagonalize(P); // Tridiagonalizes.
  A.Qr(P); // Diagonalizes.
  if(P) P->Transpose();
  s->CopyDiagFromPacked(A);
}


template<typename Real>
void SpMatrix<Real>::TopEigs(VectorBase<Real> *s, MatrixBase<Real> *P,
                             MatrixIndexT lanczos_dim) const {
  const SpMatrix<Real> &S(*this); // call this "S" for easy notation.
  MatrixIndexT eig_dim = s->Dim(); // Space of dim we want to retain.
  if (lanczos_dim <= 0)
    lanczos_dim = std::max(eig_dim + 50, eig_dim + eig_dim/2);
  MatrixIndexT dim = this->NumRows();
  if (lanczos_dim >= dim) {
    // There would be no speed advantage in using this method, so just
    // use the regular approach.
    Vector<Real> s_tmp(dim);
    Matrix<Real> P_tmp(dim, dim);
    this->Eig(&s_tmp, &P_tmp);
    SortSvd(&s_tmp, &P_tmp);
    s->CopyFromVec(s_tmp.Range(0, eig_dim));
    P->CopyFromMat(P_tmp.Range(0, dim, 0, eig_dim));
    return;
  }
  KALDI_ASSERT(eig_dim <= dim && eig_dim > 0);
  KALDI_ASSERT(P->NumRows() == dim && P->NumCols() == eig_dim); // each column
  // is one eigenvector.

  Matrix<Real> Q(lanczos_dim, dim); // The rows of Q will be the
  // orthogonal vectors of the Krylov subspace.

  SpMatrix<Real> T(lanczos_dim); // This will be equal to Q S Q^T,
  // i.e. *this projected into the Krylov subspace.  Note: only the
  // diagonal and off-diagonal fo T are nonzero, i.e. it's tridiagonal,
  // but we don't have access to the low-level algorithms that work
  // on that type of matrix (since we want to use ATLAS).  So we just
  // do normal SVD, on a full matrix; it won't typically dominate.

  Q.Row(0).SetRandn();
  Q.Row(0).Scale(1.0 / Q.Row(0).Norm(2));
  for (MatrixIndexT d = 0; d < lanczos_dim; d++) {
    Vector<Real> r(dim);
    r.AddSpVec(1.0, S, Q.Row(d), 0.0);
    // r = S * q_d
    MatrixIndexT counter = 0;
    Real end_prod;
    while (1) { // Normally we'll do this loop only once:
      // we repeat to handle cases where r gets very much smaller
      // and we want to orthogonalize again.
      // We do "full orthogonalization" to preserve stability,
      // even though this is usually a waste of time.
      Real start_prod = VecVec(r, r);
      for (SignedMatrixIndexT e = d; e >= 0; e--) { // e must be signed!
        SubVector<Real> q_e(Q, e);
        Real prod = VecVec(r, q_e);
        if (counter == 0 && static_cast<MatrixIndexT>(e) + 1 >= d) // Keep T tridiagonal, which
          T(d, e) = prod; // mathematically speaking, it is.
        r.AddVec(-prod, q_e); // Subtract component in q_e.
      }
      if (d+1 == lanczos_dim) break;
      end_prod = VecVec(r, r);
      if (end_prod <= 0.1 * start_prod) {
        // also handles case where both are 0.
        // We're not confident any more that it's completely
        // orthogonal to the rest so we want to re-do.
        if (end_prod == 0.0)
          r.SetRandn(); // "Restarting".
        counter++;
        if (counter > 100)
          KALDI_ERR << "Loop detected in Lanczos iteration.";
      } else {
        break;
      }
    }
    if (d+1 != lanczos_dim) {
      // OK, at this point we're satisfied that r is orthogonal
      // to all previous rows.
      KALDI_ASSERT(end_prod != 0.0); // should have looped.
      r.Scale(1.0 / std::sqrt(end_prod)); // make it unit.
      Q.Row(d+1).CopyFromVec(r);
    }
  }

  Matrix<Real> R(lanczos_dim, lanczos_dim);  
  R.SetUnit();
  T.Qr(&R); // Diagonalizes T.
  Vector<Real> s_tmp(lanczos_dim);
  s_tmp.CopyDiagFromSp(T);  

  // Now T = R * diag(s_tmp) * R^T.
  // The next call sorts the elements of s from greatest to least absolute value,
  // and moves around the rows of R in the corresponding way.  This picks out
  // the largest (absolute) eigenvalues.
  SortSvd(&s_tmp, static_cast<Matrix<Real>*>(NULL), &R);
  // Keep only the initial rows of R, those corresponding to greatest (absolute)
  // eigenvalues.
  SubMatrix<Real> Rsub(R, 0, eig_dim, 0, lanczos_dim);
  SubVector<Real> s_sub(s_tmp, 0, eig_dim);
  s->CopyFromVec(s_sub);
      
  // For working out what to do now, just assume the other eigenvalues were
  // zero.  This is just for purposes of knowing how to get the result, and
  // not getting things wrongly transposed.
  // We have T = Rsub^T * diag(s_sub) * Rsub.
  // Now, T = Q S Q^T, with Q orthogonal,  so S = Q^T T Q = Q^T Rsub^T * diag(s) * Rsub * Q.
  // The output is P and we want S = P * diag(s) * P^T, so we need P = Q^T Rsub^T.
  P->AddMatMat(1.0, Q, kTrans, Rsub, kTrans, 0.0);
}


// Instantiate the templates for Eig and TopEig.
template
void SpMatrix<float>::Eig(VectorBase<float>*, MatrixBase<float>*) const;
template
void SpMatrix<double>::Eig(VectorBase<double>*, MatrixBase<double>*) const;

template
void SpMatrix<float>::TopEigs(VectorBase<float>*, MatrixBase<float>*, MatrixIndexT) const;
template
void SpMatrix<double>::TopEigs(VectorBase<double>*, MatrixBase<double>*, MatrixIndexT) const;

// Someone had a problem with the Intel compiler with -O3, with Qr not being
// defined for some strange reason (should automatically happen when
// we instantiate Eig and TopEigs), so we explicitly instantiate it here.
template
void SpMatrix<float>::Qr(MatrixBase<float> *Q);
template
void SpMatrix<double>::Qr(MatrixBase<double> *Q);



}
// namespace kaldi