Blame view

src/matrix/srfft.cc 13 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
  // matrix/srfft.cc
  
  // Copyright 2009-2011  Microsoft Corporation;  Go Vivace Inc.
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  //
  
  // This file includes a modified version of code originally published in Malvar,
  // H., "Signal processing with lapped transforms, " Artech House, Inc., 1992.  The
  // current copyright holder of the original code, Henrique S. Malvar, has given
  // his permission for the release of this modified version under the Apache
  // License v2.0.
  
  
  #include "matrix/srfft.h"
  #include "matrix/matrix-functions.h"
  
  namespace kaldi {
  
  
  template<typename Real>
  SplitRadixComplexFft<Real>::SplitRadixComplexFft(MatrixIndexT N) {
    if ( (N & (N-1)) != 0 || N <= 1)
      KALDI_ERR << "SplitRadixComplexFft called with invalid number of points "
                << N;
    N_ = N;
    logn_ = 0;
    while (N > 1) {
      N >>= 1;
      logn_ ++;
    }
    ComputeTables();
  }
  
  template <typename Real>
  SplitRadixComplexFft<Real>::SplitRadixComplexFft(
      const SplitRadixComplexFft<Real> &other):
      N_(other.N_), logn_(other.logn_) {
    // This code duplicates tables from a previously computed object.
    // Compare with the code in ComputeTables().
    MatrixIndexT lg2 = logn_ >> 1;
    if (logn_ & 1) lg2++;
    MatrixIndexT brseed_size = 1 << lg2;
    brseed_ = new MatrixIndexT[brseed_size];
    std::memcpy(brseed_, other.brseed_, sizeof(MatrixIndexT) * brseed_size);
  
    if (logn_ < 4) {
      tab_ = NULL;
    } else {
      tab_ = new Real*[logn_ - 3];
      for (MatrixIndexT i = logn_; i >= 4 ; i--) {
        MatrixIndexT m = 1 << i, m2 = m / 2, m4 = m2 / 2;
        MatrixIndexT this_array_size = 6 * (m4 - 2);
        tab_[i-4] = new Real[this_array_size];
        std::memcpy(tab_[i-4], other.tab_[i-4],
                    sizeof(Real) * this_array_size);
      }
    }
  }
  
  template<typename Real>
  void SplitRadixComplexFft<Real>::ComputeTables() {
    MatrixIndexT    imax, lg2, i, j;
    MatrixIndexT     m, m2, m4, m8, nel, n;
    Real    *cn, *spcn, *smcn, *c3n, *spc3n, *smc3n;
    Real    ang, c, s;
  
    lg2 = logn_ >> 1;
    if (logn_ & 1) lg2++;
    brseed_ = new MatrixIndexT[1 << lg2];
    brseed_[0] = 0;
    brseed_[1] = 1;
    for (j = 2; j <= lg2; j++) {
      imax = 1 << (j - 1);
      for (i = 0; i < imax; i++) {
        brseed_[i] <<= 1;
        brseed_[i + imax] = brseed_[i] + 1;
      }
    }
  
    if (logn_ < 4) {
      tab_ = NULL;
    } else {
      tab_ = new Real* [logn_-3];
      for (i = logn_; i>=4 ; i--) {
        /* Compute a few constants */
        m = 1 << i; m2 = m / 2; m4 = m2 / 2; m8 = m4 /2;
  
        /* Allocate memory for tables */
        nel = m4 - 2;
  
        tab_[i-4] = new Real[6*nel];
  
        /* Initialize pointers */
        cn = tab_[i-4]; spcn  = cn + nel;  smcn  = spcn + nel;
        c3n = smcn + nel;  spc3n = c3n + nel; smc3n = spc3n + nel;
  
        /* Compute tables */
        for (n = 1; n < m4; n++) {
          if (n == m8) continue;
          ang = n * M_2PI / m;
          c = std::cos(ang); s = std::sin(ang);
          *cn++ = c; *spcn++ = - (s + c); *smcn++ = s - c;
          ang = 3 * n * M_2PI / m;
          c = std::cos(ang); s = std::sin(ang);
          *c3n++ = c; *spc3n++ = - (s + c); *smc3n++ = s - c;
        }
      }
    }
  }
  
  template<typename Real>
  SplitRadixComplexFft<Real>::~SplitRadixComplexFft() {
    delete [] brseed_;
    if (tab_ != NULL) {
      for (MatrixIndexT i = 0; i < logn_-3; i++)
        delete [] tab_[i];
      delete [] tab_;
    }
  }
  
  template<typename Real>
  void SplitRadixComplexFft<Real>::Compute(Real *xr, Real *xi, bool forward) const {
    if (!forward) {  // reverse real and imaginary parts for complex FFT.
      Real *tmp = xr;
      xr = xi;
      xi = tmp;
    }
    ComputeRecursive(xr, xi, logn_);
    if (logn_ > 1) {
      BitReversePermute(xr, logn_);
      BitReversePermute(xi, logn_);
    }
  }
  
  template<typename Real>
  void SplitRadixComplexFft<Real>::Compute(Real *x, bool forward,
                                           std::vector<Real> *temp_buffer) const {
    KALDI_ASSERT(temp_buffer != NULL);
    if (temp_buffer->size() != N_)
      temp_buffer->resize(N_);
    Real *temp_ptr = &((*temp_buffer)[0]);
    for (MatrixIndexT i = 0; i < N_; i++) {
      x[i] = x[i * 2];  // put the real part in the first half of x.
      temp_ptr[i] = x[i * 2 + 1];  // put the imaginary part in temp_buffer.
    }
    // copy the imaginary part back to the second half of x.
    memcpy(static_cast<void*>(x + N_),
           static_cast<void*>(temp_ptr),
           sizeof(Real) * N_);
  
    Compute(x, x + N_, forward);
    // Now change the format back to interleaved.
    memcpy(static_cast<void*>(temp_ptr),
           static_cast<void*>(x + N_),
           sizeof(Real) * N_);
    for (MatrixIndexT i = N_-1; i > 0; i--) {  // don't include 0,
      // in case MatrixIndexT is unsigned, the loop would not terminate.
      // Treat it as a special case.
      x[i*2] = x[i];
      x[i*2 + 1] = temp_ptr[i];
    }
    x[1] = temp_ptr[0];  // special case of i = 0.
  }
  
  template<typename Real>
  void SplitRadixComplexFft<Real>::Compute(Real *x, bool forward) {
    this->Compute(x, forward, &temp_buffer_);
  }
  
  template<typename Real>
  void SplitRadixComplexFft<Real>::BitReversePermute(Real *x, MatrixIndexT logn) const {
    MatrixIndexT      i, j, lg2, n;
    MatrixIndexT      off, fj, gno, *brp;
    Real    tmp, *xp, *xq;
  
    lg2 = logn >> 1;
    n = 1 << lg2;
    if (logn & 1) lg2++;
  
    /* Unshuffling loop */
    for (off = 1; off < n; off++) {
      fj = n * brseed_[off]; i = off; j = fj;
      tmp = x[i]; x[i] = x[j]; x[j] = tmp;
      xp = &x[i];
      brp = &(brseed_[1]);
      for (gno = 1; gno < brseed_[off]; gno++) {
        xp += n;
        j = fj + *brp++;
        xq = x + j;
        tmp = *xp; *xp = *xq; *xq = tmp;
      }
    }
  }
  
  
  template<typename Real>
  void SplitRadixComplexFft<Real>::ComputeRecursive(Real *xr, Real *xi, MatrixIndexT logn) const {
  
    MatrixIndexT    m, m2, m4, m8, nel, n;
    Real    *xr1, *xr2, *xi1, *xi2;
    Real    *cn = nullptr, *spcn = nullptr, *smcn = nullptr, *c3n = nullptr,
      *spc3n = nullptr, *smc3n = nullptr;
    Real    tmp1, tmp2;
    Real   sqhalf = M_SQRT1_2;
  
    /* Check range of logn */
    if (logn < 0)
      KALDI_ERR << "Error: logn is out of bounds in SRFFT";
  
    /* Compute trivial cases */
    if (logn < 3) {
      if (logn == 2) {  /* length m = 4 */
        xr2  = xr + 2;
        xi2  = xi + 2;
        tmp1 = *xr + *xr2;
        *xr2 = *xr - *xr2;
        *xr  = tmp1;
        tmp1 = *xi + *xi2;
        *xi2 = *xi - *xi2;
        *xi  = tmp1;
        xr1  = xr + 1;
        xi1  = xi + 1;
        xr2++;
        xi2++;
        tmp1 = *xr1 + *xr2;
        *xr2 = *xr1 - *xr2;
        *xr1 = tmp1;
        tmp1 = *xi1 + *xi2;
        *xi2 = *xi1 - *xi2;
        *xi1 = tmp1;
        xr2  = xr + 1;
        xi2  = xi + 1;
        tmp1 = *xr + *xr2;
        *xr2 = *xr - *xr2;
        *xr  = tmp1;
        tmp1 = *xi + *xi2;
        *xi2 = *xi - *xi2;
        *xi  = tmp1;
        xr1  = xr + 2;
        xi1  = xi + 2;
        xr2  = xr + 3;
        xi2  = xi + 3;
        tmp1 = *xr1 + *xi2;
        tmp2 = *xi1 + *xr2;
        *xi1 = *xi1 - *xr2;
        *xr2 = *xr1 - *xi2;
        *xr1 = tmp1;
        *xi2 = tmp2;
        return;
      }
      else if (logn == 1) {   /* length m = 2 */
        xr2  = xr + 1;
        xi2  = xi + 1;
        tmp1 = *xr + *xr2;
        *xr2 = *xr - *xr2;
        *xr  = tmp1;
        tmp1 = *xi + *xi2;
        *xi2 = *xi - *xi2;
        *xi  = tmp1;
        return;
      }
      else if (logn == 0) return;   /* length m = 1 */
    }
  
    /* Compute a few constants */
    m = 1 << logn; m2 = m / 2; m4 = m2 / 2; m8 = m4 /2;
  
  
    /* Step 1 */
    xr1 = xr; xr2 = xr1 + m2;
    xi1 = xi; xi2 = xi1 + m2;
    for (n = 0; n < m2; n++) {
      tmp1 = *xr1 + *xr2;
      *xr2 = *xr1 - *xr2;
      xr2++;
      *xr1++ = tmp1;
      tmp2 = *xi1 + *xi2;
      *xi2 = *xi1 - *xi2;
      xi2++;
      *xi1++ = tmp2;
    }
  
    /* Step 2 */
    xr1 = xr + m2; xr2 = xr1 + m4;
    xi1 = xi + m2; xi2 = xi1 + m4;
    for (n = 0; n < m4; n++) {
      tmp1 = *xr1 + *xi2;
      tmp2 = *xi1 + *xr2;
      *xi1 = *xi1 - *xr2;
      xi1++;
      *xr2++ = *xr1 - *xi2;
      *xr1++ = tmp1;
      *xi2++ = tmp2;
      // xr1++; xr2++; xi1++; xi2++;
    }
  
    /* Steps 3 & 4 */
    xr1 = xr + m2; xr2 = xr1 + m4;
    xi1 = xi + m2; xi2 = xi1 + m4;
    if (logn >= 4) {
      nel = m4 - 2;
      cn  = tab_[logn-4]; spcn  = cn + nel;  smcn  = spcn + nel;
      c3n = smcn + nel;  spc3n = c3n + nel; smc3n = spc3n + nel;
    }
    xr1++; xr2++; xi1++; xi2++;
    // xr1++; xi1++;
    for (n = 1; n < m4; n++) {
      if (n == m8) {
        tmp1 =  sqhalf * (*xr1 + *xi1);
        *xi1 =  sqhalf * (*xi1 - *xr1);
        *xr1 =  tmp1;
        tmp2 =  sqhalf * (*xi2 - *xr2);
        *xi2 = -sqhalf * (*xr2 + *xi2);
        *xr2 =  tmp2;
      } else {
        tmp2 = *cn++ * (*xr1 + *xi1);
        tmp1 = *spcn++ * *xr1 + tmp2;
        *xr1 = *smcn++ * *xi1 + tmp2;
        *xi1 = tmp1;
        tmp2 = *c3n++ * (*xr2 + *xi2);
        tmp1 = *spc3n++ * *xr2 + tmp2;
        *xr2 = *smc3n++ * *xi2 + tmp2;
        *xi2 = tmp1;
      }
      xr1++; xr2++; xi1++; xi2++;
    }
  
    /* Call ssrec again with half DFT length */
    ComputeRecursive(xr, xi, logn-1);
  
    /* Call ssrec again twice with one quarter DFT length.
       Constants have to be recomputed, because they are static! */
    // m = 1 << logn; m2 = m / 2;
    ComputeRecursive(xr + m2, xi + m2, logn - 2);
    // m = 1 << logn;
    m4 = 3 * (m / 4);
    ComputeRecursive(xr + m4, xi + m4, logn - 2);
  }
  
  
  template<typename Real>
  void SplitRadixRealFft<Real>::Compute(Real *data, bool forward) {
    Compute(data, forward, &this->temp_buffer_);
  }
  
  
  // This code is mostly the same as the RealFft function.  It would be
  // possible to replace it with more efficient code from Rico's book.
  template<typename Real>
  void SplitRadixRealFft<Real>::Compute(Real *data, bool forward,
                                        std::vector<Real> *temp_buffer) const {
    MatrixIndexT N = N_, N2 = N/2;
    KALDI_ASSERT(N%2 == 0);
    if (forward) // call to base class
      SplitRadixComplexFft<Real>::Compute(data, true, temp_buffer);
  
    Real rootN_re, rootN_im;  // exp(-2pi/N), forward; exp(2pi/N), backward
    int forward_sign = forward ? -1 : 1;
    ComplexImExp(static_cast<Real>(M_2PI/N *forward_sign), &rootN_re, &rootN_im);
    Real kN_re = -forward_sign, kN_im = 0.0;  // exp(-2pik/N), forward; exp(-2pik/N), backward
    // kN starts out as 1.0 for forward algorithm but -1.0 for backward.
    for (MatrixIndexT k = 1; 2*k <= N2; k++) {
      ComplexMul(rootN_re, rootN_im, &kN_re, &kN_im);
  
      Real Ck_re, Ck_im, Dk_re, Dk_im;
      // C_k = 1/2 (B_k + B_{N/2 - k}^*) :
      Ck_re = 0.5 * (data[2*k] + data[N - 2*k]);
      Ck_im = 0.5 * (data[2*k + 1] - data[N - 2*k + 1]);
      // re(D_k)= 1/2 (im(B_k) + im(B_{N/2-k})):
      Dk_re = 0.5 * (data[2*k + 1] + data[N - 2*k + 1]);
      // im(D_k) = -1/2 (re(B_k) - re(B_{N/2-k}))
      Dk_im =-0.5 * (data[2*k] - data[N - 2*k]);
      // A_k = C_k + 1^(k/N) D_k:
      data[2*k] = Ck_re;  // A_k <-- C_k
      data[2*k+1] = Ck_im;
      // now A_k += D_k 1^(k/N)
      ComplexAddProduct(Dk_re, Dk_im, kN_re, kN_im, &(data[2*k]), &(data[2*k+1]));
  
      MatrixIndexT kdash = N2 - k;
      if (kdash != k) {
        // Next we handle the index k' = N/2 - k.  This is necessary
        // to do now, to avoid invalidating data that we will later need.
        // The quantities C_{k'} and D_{k'} are just the conjugates of C_k
        // and D_k, so the equations are simple modifications of the above,
        // replacing Ck_im and Dk_im with their negatives.
        data[2*kdash] = Ck_re;  // A_k' <-- C_k'
        data[2*kdash+1] = -Ck_im;
        // now A_k' += D_k' 1^(k'/N)
        // We use 1^(k'/N) = 1^((N/2 - k) / N) = 1^(1/2) 1^(-k/N) = -1 * (1^(k/N))^*
        // so it's the same as 1^(k/N) but with the real part negated.
        ComplexAddProduct(Dk_re, -Dk_im, -kN_re, kN_im, &(data[2*kdash]), &(data[2*kdash+1]));
      }
    }
  
    {  // Now handle k = 0.
      // In simple terms: after the complex fft, data[0] becomes the sum of real
      // parts input[0], input[2]... and data[1] becomes the sum of imaginary
      // pats input[1], input[3]...
      // "zeroth" [A_0] is just the sum of input[0]+input[1]+input[2]..
      // and "n2th" [A_{N/2}] is input[0]-input[1]+input[2]... .
      Real zeroth = data[0] + data[1],
          n2th = data[0] - data[1];
      data[0] = zeroth;
      data[1] = n2th;
      if (!forward) {
        data[0] /= 2;
        data[1] /= 2;
      }
    }
    if (!forward) {  // call to base class
      SplitRadixComplexFft<Real>::Compute(data, false, temp_buffer);
      for (MatrixIndexT i = 0; i < N; i++)
        data[i] *= 2.0;
      // This is so we get a factor of N increase, rather than N/2 which we would
      // otherwise get from [ComplexFft, forward] + [ComplexFft, backward] in dimension N/2.
      // It's for consistency with our normal FFT convensions.
    }
  }
  
  template class SplitRadixComplexFft<float>;
  template class SplitRadixComplexFft<double>;
  template class SplitRadixRealFft<float>;
  template class SplitRadixRealFft<double>;
  
  
  } // end namespace kaldi