srfft.cc 13 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
// matrix/srfft.cc

// Copyright 2009-2011  Microsoft Corporation;  Go Vivace Inc.

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
//

// This file includes a modified version of code originally published in Malvar,
// H., "Signal processing with lapped transforms, " Artech House, Inc., 1992.  The
// current copyright holder of the original code, Henrique S. Malvar, has given
// his permission for the release of this modified version under the Apache
// License v2.0.


#include "matrix/srfft.h"
#include "matrix/matrix-functions.h"

namespace kaldi {


template<typename Real>
SplitRadixComplexFft<Real>::SplitRadixComplexFft(MatrixIndexT N) {
  if ( (N & (N-1)) != 0 || N <= 1)
    KALDI_ERR << "SplitRadixComplexFft called with invalid number of points "
              << N;
  N_ = N;
  logn_ = 0;
  while (N > 1) {
    N >>= 1;
    logn_ ++;
  }
  ComputeTables();
}

template <typename Real>
SplitRadixComplexFft<Real>::SplitRadixComplexFft(
    const SplitRadixComplexFft<Real> &other):
    N_(other.N_), logn_(other.logn_) {
  // This code duplicates tables from a previously computed object.
  // Compare with the code in ComputeTables().
  MatrixIndexT lg2 = logn_ >> 1;
  if (logn_ & 1) lg2++;
  MatrixIndexT brseed_size = 1 << lg2;
  brseed_ = new MatrixIndexT[brseed_size];
  std::memcpy(brseed_, other.brseed_, sizeof(MatrixIndexT) * brseed_size);

  if (logn_ < 4) {
    tab_ = NULL;
  } else {
    tab_ = new Real*[logn_ - 3];
    for (MatrixIndexT i = logn_; i >= 4 ; i--) {
      MatrixIndexT m = 1 << i, m2 = m / 2, m4 = m2 / 2;
      MatrixIndexT this_array_size = 6 * (m4 - 2);
      tab_[i-4] = new Real[this_array_size];
      std::memcpy(tab_[i-4], other.tab_[i-4],
                  sizeof(Real) * this_array_size);
    }
  }
}

template<typename Real>
void SplitRadixComplexFft<Real>::ComputeTables() {
  MatrixIndexT    imax, lg2, i, j;
  MatrixIndexT     m, m2, m4, m8, nel, n;
  Real    *cn, *spcn, *smcn, *c3n, *spc3n, *smc3n;
  Real    ang, c, s;

  lg2 = logn_ >> 1;
  if (logn_ & 1) lg2++;
  brseed_ = new MatrixIndexT[1 << lg2];
  brseed_[0] = 0;
  brseed_[1] = 1;
  for (j = 2; j <= lg2; j++) {
    imax = 1 << (j - 1);
    for (i = 0; i < imax; i++) {
      brseed_[i] <<= 1;
      brseed_[i + imax] = brseed_[i] + 1;
    }
  }

  if (logn_ < 4) {
    tab_ = NULL;
  } else {
    tab_ = new Real* [logn_-3];
    for (i = logn_; i>=4 ; i--) {
      /* Compute a few constants */
      m = 1 << i; m2 = m / 2; m4 = m2 / 2; m8 = m4 /2;

      /* Allocate memory for tables */
      nel = m4 - 2;

      tab_[i-4] = new Real[6*nel];

      /* Initialize pointers */
      cn = tab_[i-4]; spcn  = cn + nel;  smcn  = spcn + nel;
      c3n = smcn + nel;  spc3n = c3n + nel; smc3n = spc3n + nel;

      /* Compute tables */
      for (n = 1; n < m4; n++) {
        if (n == m8) continue;
        ang = n * M_2PI / m;
        c = std::cos(ang); s = std::sin(ang);
        *cn++ = c; *spcn++ = - (s + c); *smcn++ = s - c;
        ang = 3 * n * M_2PI / m;
        c = std::cos(ang); s = std::sin(ang);
        *c3n++ = c; *spc3n++ = - (s + c); *smc3n++ = s - c;
      }
    }
  }
}

template<typename Real>
SplitRadixComplexFft<Real>::~SplitRadixComplexFft() {
  delete [] brseed_;
  if (tab_ != NULL) {
    for (MatrixIndexT i = 0; i < logn_-3; i++)
      delete [] tab_[i];
    delete [] tab_;
  }
}

template<typename Real>
void SplitRadixComplexFft<Real>::Compute(Real *xr, Real *xi, bool forward) const {
  if (!forward) {  // reverse real and imaginary parts for complex FFT.
    Real *tmp = xr;
    xr = xi;
    xi = tmp;
  }
  ComputeRecursive(xr, xi, logn_);
  if (logn_ > 1) {
    BitReversePermute(xr, logn_);
    BitReversePermute(xi, logn_);
  }
}

template<typename Real>
void SplitRadixComplexFft<Real>::Compute(Real *x, bool forward,
                                         std::vector<Real> *temp_buffer) const {
  KALDI_ASSERT(temp_buffer != NULL);
  if (temp_buffer->size() != N_)
    temp_buffer->resize(N_);
  Real *temp_ptr = &((*temp_buffer)[0]);
  for (MatrixIndexT i = 0; i < N_; i++) {
    x[i] = x[i * 2];  // put the real part in the first half of x.
    temp_ptr[i] = x[i * 2 + 1];  // put the imaginary part in temp_buffer.
  }
  // copy the imaginary part back to the second half of x.
  memcpy(static_cast<void*>(x + N_),
         static_cast<void*>(temp_ptr),
         sizeof(Real) * N_);

  Compute(x, x + N_, forward);
  // Now change the format back to interleaved.
  memcpy(static_cast<void*>(temp_ptr),
         static_cast<void*>(x + N_),
         sizeof(Real) * N_);
  for (MatrixIndexT i = N_-1; i > 0; i--) {  // don't include 0,
    // in case MatrixIndexT is unsigned, the loop would not terminate.
    // Treat it as a special case.
    x[i*2] = x[i];
    x[i*2 + 1] = temp_ptr[i];
  }
  x[1] = temp_ptr[0];  // special case of i = 0.
}

template<typename Real>
void SplitRadixComplexFft<Real>::Compute(Real *x, bool forward) {
  this->Compute(x, forward, &temp_buffer_);
}

template<typename Real>
void SplitRadixComplexFft<Real>::BitReversePermute(Real *x, MatrixIndexT logn) const {
  MatrixIndexT      i, j, lg2, n;
  MatrixIndexT      off, fj, gno, *brp;
  Real    tmp, *xp, *xq;

  lg2 = logn >> 1;
  n = 1 << lg2;
  if (logn & 1) lg2++;

  /* Unshuffling loop */
  for (off = 1; off < n; off++) {
    fj = n * brseed_[off]; i = off; j = fj;
    tmp = x[i]; x[i] = x[j]; x[j] = tmp;
    xp = &x[i];
    brp = &(brseed_[1]);
    for (gno = 1; gno < brseed_[off]; gno++) {
      xp += n;
      j = fj + *brp++;
      xq = x + j;
      tmp = *xp; *xp = *xq; *xq = tmp;
    }
  }
}


template<typename Real>
void SplitRadixComplexFft<Real>::ComputeRecursive(Real *xr, Real *xi, MatrixIndexT logn) const {

  MatrixIndexT    m, m2, m4, m8, nel, n;
  Real    *xr1, *xr2, *xi1, *xi2;
  Real    *cn = nullptr, *spcn = nullptr, *smcn = nullptr, *c3n = nullptr,
    *spc3n = nullptr, *smc3n = nullptr;
  Real    tmp1, tmp2;
  Real   sqhalf = M_SQRT1_2;

  /* Check range of logn */
  if (logn < 0)
    KALDI_ERR << "Error: logn is out of bounds in SRFFT";

  /* Compute trivial cases */
  if (logn < 3) {
    if (logn == 2) {  /* length m = 4 */
      xr2  = xr + 2;
      xi2  = xi + 2;
      tmp1 = *xr + *xr2;
      *xr2 = *xr - *xr2;
      *xr  = tmp1;
      tmp1 = *xi + *xi2;
      *xi2 = *xi - *xi2;
      *xi  = tmp1;
      xr1  = xr + 1;
      xi1  = xi + 1;
      xr2++;
      xi2++;
      tmp1 = *xr1 + *xr2;
      *xr2 = *xr1 - *xr2;
      *xr1 = tmp1;
      tmp1 = *xi1 + *xi2;
      *xi2 = *xi1 - *xi2;
      *xi1 = tmp1;
      xr2  = xr + 1;
      xi2  = xi + 1;
      tmp1 = *xr + *xr2;
      *xr2 = *xr - *xr2;
      *xr  = tmp1;
      tmp1 = *xi + *xi2;
      *xi2 = *xi - *xi2;
      *xi  = tmp1;
      xr1  = xr + 2;
      xi1  = xi + 2;
      xr2  = xr + 3;
      xi2  = xi + 3;
      tmp1 = *xr1 + *xi2;
      tmp2 = *xi1 + *xr2;
      *xi1 = *xi1 - *xr2;
      *xr2 = *xr1 - *xi2;
      *xr1 = tmp1;
      *xi2 = tmp2;
      return;
    }
    else if (logn == 1) {   /* length m = 2 */
      xr2  = xr + 1;
      xi2  = xi + 1;
      tmp1 = *xr + *xr2;
      *xr2 = *xr - *xr2;
      *xr  = tmp1;
      tmp1 = *xi + *xi2;
      *xi2 = *xi - *xi2;
      *xi  = tmp1;
      return;
    }
    else if (logn == 0) return;   /* length m = 1 */
  }

  /* Compute a few constants */
  m = 1 << logn; m2 = m / 2; m4 = m2 / 2; m8 = m4 /2;


  /* Step 1 */
  xr1 = xr; xr2 = xr1 + m2;
  xi1 = xi; xi2 = xi1 + m2;
  for (n = 0; n < m2; n++) {
    tmp1 = *xr1 + *xr2;
    *xr2 = *xr1 - *xr2;
    xr2++;
    *xr1++ = tmp1;
    tmp2 = *xi1 + *xi2;
    *xi2 = *xi1 - *xi2;
    xi2++;
    *xi1++ = tmp2;
  }

  /* Step 2 */
  xr1 = xr + m2; xr2 = xr1 + m4;
  xi1 = xi + m2; xi2 = xi1 + m4;
  for (n = 0; n < m4; n++) {
    tmp1 = *xr1 + *xi2;
    tmp2 = *xi1 + *xr2;
    *xi1 = *xi1 - *xr2;
    xi1++;
    *xr2++ = *xr1 - *xi2;
    *xr1++ = tmp1;
    *xi2++ = tmp2;
    // xr1++; xr2++; xi1++; xi2++;
  }

  /* Steps 3 & 4 */
  xr1 = xr + m2; xr2 = xr1 + m4;
  xi1 = xi + m2; xi2 = xi1 + m4;
  if (logn >= 4) {
    nel = m4 - 2;
    cn  = tab_[logn-4]; spcn  = cn + nel;  smcn  = spcn + nel;
    c3n = smcn + nel;  spc3n = c3n + nel; smc3n = spc3n + nel;
  }
  xr1++; xr2++; xi1++; xi2++;
  // xr1++; xi1++;
  for (n = 1; n < m4; n++) {
    if (n == m8) {
      tmp1 =  sqhalf * (*xr1 + *xi1);
      *xi1 =  sqhalf * (*xi1 - *xr1);
      *xr1 =  tmp1;
      tmp2 =  sqhalf * (*xi2 - *xr2);
      *xi2 = -sqhalf * (*xr2 + *xi2);
      *xr2 =  tmp2;
    } else {
      tmp2 = *cn++ * (*xr1 + *xi1);
      tmp1 = *spcn++ * *xr1 + tmp2;
      *xr1 = *smcn++ * *xi1 + tmp2;
      *xi1 = tmp1;
      tmp2 = *c3n++ * (*xr2 + *xi2);
      tmp1 = *spc3n++ * *xr2 + tmp2;
      *xr2 = *smc3n++ * *xi2 + tmp2;
      *xi2 = tmp1;
    }
    xr1++; xr2++; xi1++; xi2++;
  }

  /* Call ssrec again with half DFT length */
  ComputeRecursive(xr, xi, logn-1);

  /* Call ssrec again twice with one quarter DFT length.
     Constants have to be recomputed, because they are static! */
  // m = 1 << logn; m2 = m / 2;
  ComputeRecursive(xr + m2, xi + m2, logn - 2);
  // m = 1 << logn;
  m4 = 3 * (m / 4);
  ComputeRecursive(xr + m4, xi + m4, logn - 2);
}


template<typename Real>
void SplitRadixRealFft<Real>::Compute(Real *data, bool forward) {
  Compute(data, forward, &this->temp_buffer_);
}


// This code is mostly the same as the RealFft function.  It would be
// possible to replace it with more efficient code from Rico's book.
template<typename Real>
void SplitRadixRealFft<Real>::Compute(Real *data, bool forward,
                                      std::vector<Real> *temp_buffer) const {
  MatrixIndexT N = N_, N2 = N/2;
  KALDI_ASSERT(N%2 == 0);
  if (forward) // call to base class
    SplitRadixComplexFft<Real>::Compute(data, true, temp_buffer);

  Real rootN_re, rootN_im;  // exp(-2pi/N), forward; exp(2pi/N), backward
  int forward_sign = forward ? -1 : 1;
  ComplexImExp(static_cast<Real>(M_2PI/N *forward_sign), &rootN_re, &rootN_im);
  Real kN_re = -forward_sign, kN_im = 0.0;  // exp(-2pik/N), forward; exp(-2pik/N), backward
  // kN starts out as 1.0 for forward algorithm but -1.0 for backward.
  for (MatrixIndexT k = 1; 2*k <= N2; k++) {
    ComplexMul(rootN_re, rootN_im, &kN_re, &kN_im);

    Real Ck_re, Ck_im, Dk_re, Dk_im;
    // C_k = 1/2 (B_k + B_{N/2 - k}^*) :
    Ck_re = 0.5 * (data[2*k] + data[N - 2*k]);
    Ck_im = 0.5 * (data[2*k + 1] - data[N - 2*k + 1]);
    // re(D_k)= 1/2 (im(B_k) + im(B_{N/2-k})):
    Dk_re = 0.5 * (data[2*k + 1] + data[N - 2*k + 1]);
    // im(D_k) = -1/2 (re(B_k) - re(B_{N/2-k}))
    Dk_im =-0.5 * (data[2*k] - data[N - 2*k]);
    // A_k = C_k + 1^(k/N) D_k:
    data[2*k] = Ck_re;  // A_k <-- C_k
    data[2*k+1] = Ck_im;
    // now A_k += D_k 1^(k/N)
    ComplexAddProduct(Dk_re, Dk_im, kN_re, kN_im, &(data[2*k]), &(data[2*k+1]));

    MatrixIndexT kdash = N2 - k;
    if (kdash != k) {
      // Next we handle the index k' = N/2 - k.  This is necessary
      // to do now, to avoid invalidating data that we will later need.
      // The quantities C_{k'} and D_{k'} are just the conjugates of C_k
      // and D_k, so the equations are simple modifications of the above,
      // replacing Ck_im and Dk_im with their negatives.
      data[2*kdash] = Ck_re;  // A_k' <-- C_k'
      data[2*kdash+1] = -Ck_im;
      // now A_k' += D_k' 1^(k'/N)
      // We use 1^(k'/N) = 1^((N/2 - k) / N) = 1^(1/2) 1^(-k/N) = -1 * (1^(k/N))^*
      // so it's the same as 1^(k/N) but with the real part negated.
      ComplexAddProduct(Dk_re, -Dk_im, -kN_re, kN_im, &(data[2*kdash]), &(data[2*kdash+1]));
    }
  }

  {  // Now handle k = 0.
    // In simple terms: after the complex fft, data[0] becomes the sum of real
    // parts input[0], input[2]... and data[1] becomes the sum of imaginary
    // pats input[1], input[3]...
    // "zeroth" [A_0] is just the sum of input[0]+input[1]+input[2]..
    // and "n2th" [A_{N/2}] is input[0]-input[1]+input[2]... .
    Real zeroth = data[0] + data[1],
        n2th = data[0] - data[1];
    data[0] = zeroth;
    data[1] = n2th;
    if (!forward) {
      data[0] /= 2;
      data[1] /= 2;
    }
  }
  if (!forward) {  // call to base class
    SplitRadixComplexFft<Real>::Compute(data, false, temp_buffer);
    for (MatrixIndexT i = 0; i < N; i++)
      data[i] *= 2.0;
    // This is so we get a factor of N increase, rather than N/2 which we would
    // otherwise get from [ComplexFft, forward] + [ComplexFft, backward] in dimension N/2.
    // It's for consistency with our normal FFT convensions.
  }
}

template class SplitRadixComplexFft<float>;
template class SplitRadixComplexFft<double>;
template class SplitRadixRealFft<float>;
template class SplitRadixRealFft<double>;


} // end namespace kaldi