Blame view
src/nnet/nnet-activation.h
11.6 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
// nnet/nnet-activation.h // Copyright 2011-2016 Brno University of Technology (author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET_NNET_ACTIVATION_H_ #define KALDI_NNET_NNET_ACTIVATION_H_ #include <string> #include <vector> #include <cmath> #include "nnet/nnet-component.h" #include "nnet/nnet-utils.h" #include "cudamatrix/cu-math.h" #include "cudamatrix/cu-rand.h" #include "util/text-utils.h" namespace kaldi { namespace nnet1 { class Softmax : public Component { public: Softmax(int32 dim_in, int32 dim_out): Component(dim_in, dim_out) { } ~Softmax() { } Component* Copy() const { return new Softmax(*this); } ComponentType GetType() const { return kSoftmax; } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { // y = e^x_j/sum_j(e^x_j) out->SoftMaxPerRow(in); } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { // simply copy the error derivative // (ie. assume crossentropy error function, // while in_diff contains (net_output-target) : // this is already derivative of the error with // respect to activations of last layer neurons) in_diff->CopyFromMat(out_diff); } }; class HiddenSoftmax : public Component { public: HiddenSoftmax(int32 dim_in, int32 dim_out) : Component(dim_in, dim_out) { } ~HiddenSoftmax() { } Component* Copy() const { return new HiddenSoftmax(*this); } ComponentType GetType() const { return kHiddenSoftmax; } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { // y = e^x_j/sum_j(e^x_j) out->SoftMaxPerRow(in); } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { // This Softmax should be used for a hidden layer, it calculates // the true Jacobian of Softmax: J = diag(out) - out*out^T // The backpropagation formual is: // in_diff = out_diff \odot out - out(out_diff^T * out) // (where \odot is Hadamard product) // 1st term, out_diff \odot out, in_diff->CopyFromMat(out_diff); in_diff->MulElements(out); // 2nd term, -out(out_diff^T * out), diag_out_diff_out_.Resize(out.NumRows()); diag_out_diff_out_.AddDiagMatMat(1.0, out_diff, kNoTrans, out, kTrans, 0.0); in_diff->AddDiagVecMat(-1.0, diag_out_diff_out_, out, kNoTrans, 1.0); } private: /// buffer for dot-products in BackpropagateFnc, CuVector<BaseFloat> diag_out_diff_out_; }; class BlockSoftmax : public Component { public: BlockSoftmax(int32 dim_in, int32 dim_out): Component(dim_in, dim_out) { } ~BlockSoftmax() { } Component* Copy() const { return new BlockSoftmax(*this); } ComponentType GetType() const { return kBlockSoftmax; } void InitData(std::istream &is) { // parse config std::string token, dims_str; while (is >> std::ws, !is.eof()) { ReadToken(is, false, &token); /**/ if (token == "<BlockDims>") is >> dims_str; else KALDI_ERR << "Unknown token " << token << ", a typo in config?" << " (BlockDims)"; } // parse dims, if (!kaldi::SplitStringToIntegers(dims_str, ",:", false, &block_dims)) KALDI_ERR << "Invalid block-dims " << dims_str; // sanity check int32 sum = 0; for (int32 i = 0; i < block_dims.size(); i++) { sum += block_dims[i]; } KALDI_ASSERT(sum == OutputDim()); } void ReadData(std::istream &is, bool binary) { ReadIntegerVector(is, binary, &block_dims); block_offset.resize(block_dims.size()+1, 0); for (int32 i = 0; i < block_dims.size(); i++) { block_offset[i+1] = block_offset[i] + block_dims[i]; } // check KALDI_ASSERT(OutputDim() == block_offset[block_offset.size()-1]); } void WriteData(std::ostream &os, bool binary) const { WriteIntegerVector(os, binary, block_dims); } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { // perform softmax per block: for (int32 bl = 0; bl < block_dims.size(); bl++) { // get the blocks, CuSubMatrix<BaseFloat> in_bl = in.ColRange(block_offset[bl], block_dims[bl]); CuSubMatrix<BaseFloat> out_bl = out->ColRange(block_offset[bl], block_dims[bl]); // y = e^x_j/sum_j(e^x_j), out_bl.SoftMaxPerRow(in_bl); } } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { // copy the error derivative: // (assuming we already got softmax-cross-entropy derivative in out_diff) in_diff->CopyFromMat(out_diff); // Set the derivatives to zero for the matrix-lines in which // the sum of 'derivatives' was 1.0 (i.e. there was no target): for (int32 bl = 0; bl < block_dims.size(); bl++) { // get the block, CuSubMatrix<BaseFloat> diff_bl = in_diff->ColRange(block_offset[bl], block_dims[bl]); // get the sum of each row, CuVector<BaseFloat> row_sum(diff_bl.NumRows()); row_sum.AddColSumMat(1.0, diff_bl, 0.0); // 0: keep as-is, 1: zero-out // we'll scale rows by 0/1 masks, CuVector<BaseFloat> row_diff_mask(row_sum); row_diff_mask.Scale(-1.0); // 0: keep as-is, -1: zero-out row_diff_mask.Add(1.0); // 1: keep as-is, 0: zero-out // here we should have only 0's and 1's, diff_bl.MulRowsVec(row_diff_mask); } } std::string Info() const { return " softmax-dims " + ToString(block_dims); } std::vector<int32> block_dims; std::vector<int32> block_offset; }; class Sigmoid : public Component { public: Sigmoid(int32 dim_in, int32 dim_out): Component(dim_in, dim_out) { } ~Sigmoid() { } Component* Copy() const { return new Sigmoid(*this); } ComponentType GetType() const { return kSigmoid; } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { // y = 1/(1+e^-x) out->Sigmoid(in); } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { // ey = y(1-y)ex, in_diff->DiffSigmoid(out, out_diff); } }; class Tanh : public Component { public: Tanh(int32 dim_in, int32 dim_out): Component(dim_in, dim_out) { } ~Tanh() { } Component* Copy() const { return new Tanh(*this); } ComponentType GetType() const { return kTanh; } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { // y = (e^x - e^(-x)) / (e^x + e^(-x)), out->Tanh(in); } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { // ey = (1 - y^2)ex in_diff->DiffTanh(out, out_diff); } }; class Dropout : public Component { public: Dropout(int32 dim_in, int32 dim_out): Component(dim_in, dim_out), dropout_rate_(0.5) { } ~Dropout() { } Component* Copy() const { return new Dropout(*this); } ComponentType GetType() const { return kDropout; } void InitData(std::istream &is) { is >> std::ws; // eat-up whitespace // parse config std::string token; while (is >> std::ws, !is.eof()) { ReadToken(is, false, &token); /**/ if (token == "<DropoutRate>") ReadBasicType(is, false, &dropout_rate_); else KALDI_ERR << "Unknown token " << token << ", a typo in config?" << " (DropoutRate)"; } KALDI_ASSERT(dropout_rate_ >= 0.0 && dropout_rate_ < 1.0); } void ReadData(std::istream &is, bool binary) { // Read all the '<Tokens>' in arbitrary order, bool finished = false; while ('<' == Peek(is, binary) && !finished) { std::string token; int first_char = PeekToken(is, binary); switch (first_char) { case 'D': ReadToken(is, false, &token); /**/ if (token == "<DropoutRate>") ReadBasicType(is, binary, &dropout_rate_); else if (token == "<DropoutRetention>") { /* compatibility */ BaseFloat dropout_retention; ReadBasicType(is, binary, &dropout_retention); dropout_rate_ = 1.0 - dropout_retention; } else KALDI_ERR << "Unknown token: " << token; break; case '!': ExpectToken(is, binary, "<!EndOfComponent>"); finished = true; break; default: ReadToken(is, false, &token); KALDI_ERR << "Unknown token: " << token; } } KALDI_ASSERT(dropout_rate_ >= 0.0 && dropout_rate_ < 1.0); } void WriteData(std::ostream &os, bool binary) const { WriteToken(os, binary, "<DropoutRate>"); WriteBasicType(os, binary, dropout_rate_); } std::string Info() const { return std::string("<DropoutRate> ") + ToString(dropout_rate_); } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { out->CopyFromMat(in); // set N inputs to zero, according to the 'dropout_rate_' ... dropout_mask_.Resize(out->NumRows(), out->NumCols()); rand_.RandUniform(&dropout_mask_); // [0..1] dropout_mask_.Add(-dropout_rate_); // [(-rate)..(1-rate)] dropout_mask_.Heaviside(dropout_mask_); // (x > 0.0 ? 1 : 0) out->MulElements(dropout_mask_); // rescale to keep the same dynamic range as w/o dropout, out->Scale(1.0 / (1.0 - dropout_rate_)); } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { in_diff->CopyFromMat(out_diff); // use same mask on the error derivatives... in_diff->MulElements(dropout_mask_); // enlarge the output to fit same dynamic range as w/o dropout in_diff->Scale(1.0 / (1.0 - dropout_rate_)); } BaseFloat GetDropoutRate() { return dropout_rate_; } void SetDropoutRate(BaseFloat dr) { dropout_rate_ = dr; KALDI_ASSERT(dropout_rate_ >= 0.0 && dropout_rate_ < 1.0); } private: BaseFloat dropout_rate_; ///< probability that a neuron is dropped, CuRand<BaseFloat> rand_; ///< generator of random numbers, CuMatrix<BaseFloat> dropout_mask_; // random binary mask, // 1 = keep neuron, 0 = drop neuron, }; } // namespace nnet1 } // namespace kaldi #endif // KALDI_NNET_NNET_ACTIVATION_H_ |