nnet-activation.h
11.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// nnet/nnet-activation.h
// Copyright 2011-2016 Brno University of Technology (author: Karel Vesely)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET_NNET_ACTIVATION_H_
#define KALDI_NNET_NNET_ACTIVATION_H_
#include <string>
#include <vector>
#include <cmath>
#include "nnet/nnet-component.h"
#include "nnet/nnet-utils.h"
#include "cudamatrix/cu-math.h"
#include "cudamatrix/cu-rand.h"
#include "util/text-utils.h"
namespace kaldi {
namespace nnet1 {
class Softmax : public Component {
public:
Softmax(int32 dim_in, int32 dim_out):
Component(dim_in, dim_out)
{ }
~Softmax()
{ }
Component* Copy() const { return new Softmax(*this); }
ComponentType GetType() const { return kSoftmax; }
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
// y = e^x_j/sum_j(e^x_j)
out->SoftMaxPerRow(in);
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
// simply copy the error derivative
// (ie. assume crossentropy error function,
// while in_diff contains (net_output-target) :
// this is already derivative of the error with
// respect to activations of last layer neurons)
in_diff->CopyFromMat(out_diff);
}
};
class HiddenSoftmax : public Component {
public:
HiddenSoftmax(int32 dim_in, int32 dim_out) :
Component(dim_in, dim_out)
{ }
~HiddenSoftmax()
{ }
Component* Copy() const { return new HiddenSoftmax(*this); }
ComponentType GetType() const { return kHiddenSoftmax; }
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
// y = e^x_j/sum_j(e^x_j)
out->SoftMaxPerRow(in);
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
// This Softmax should be used for a hidden layer, it calculates
// the true Jacobian of Softmax: J = diag(out) - out*out^T
// The backpropagation formual is:
// in_diff = out_diff \odot out - out(out_diff^T * out)
// (where \odot is Hadamard product)
// 1st term, out_diff \odot out,
in_diff->CopyFromMat(out_diff);
in_diff->MulElements(out);
// 2nd term, -out(out_diff^T * out),
diag_out_diff_out_.Resize(out.NumRows());
diag_out_diff_out_.AddDiagMatMat(1.0, out_diff, kNoTrans, out, kTrans, 0.0);
in_diff->AddDiagVecMat(-1.0, diag_out_diff_out_, out, kNoTrans, 1.0);
}
private:
/// buffer for dot-products in BackpropagateFnc,
CuVector<BaseFloat> diag_out_diff_out_;
};
class BlockSoftmax : public Component {
public:
BlockSoftmax(int32 dim_in, int32 dim_out):
Component(dim_in, dim_out)
{ }
~BlockSoftmax()
{ }
Component* Copy() const { return new BlockSoftmax(*this); }
ComponentType GetType() const { return kBlockSoftmax; }
void InitData(std::istream &is) {
// parse config
std::string token,
dims_str;
while (is >> std::ws, !is.eof()) {
ReadToken(is, false, &token);
/**/ if (token == "<BlockDims>") is >> dims_str;
else KALDI_ERR << "Unknown token " << token << ", a typo in config?"
<< " (BlockDims)";
}
// parse dims,
if (!kaldi::SplitStringToIntegers(dims_str, ",:", false, &block_dims))
KALDI_ERR << "Invalid block-dims " << dims_str;
// sanity check
int32 sum = 0;
for (int32 i = 0; i < block_dims.size(); i++) {
sum += block_dims[i];
}
KALDI_ASSERT(sum == OutputDim());
}
void ReadData(std::istream &is, bool binary) {
ReadIntegerVector(is, binary, &block_dims);
block_offset.resize(block_dims.size()+1, 0);
for (int32 i = 0; i < block_dims.size(); i++) {
block_offset[i+1] = block_offset[i] + block_dims[i];
}
// check
KALDI_ASSERT(OutputDim() == block_offset[block_offset.size()-1]);
}
void WriteData(std::ostream &os, bool binary) const {
WriteIntegerVector(os, binary, block_dims);
}
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
// perform softmax per block:
for (int32 bl = 0; bl < block_dims.size(); bl++) {
// get the blocks,
CuSubMatrix<BaseFloat> in_bl =
in.ColRange(block_offset[bl], block_dims[bl]);
CuSubMatrix<BaseFloat> out_bl =
out->ColRange(block_offset[bl], block_dims[bl]);
// y = e^x_j/sum_j(e^x_j),
out_bl.SoftMaxPerRow(in_bl);
}
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
// copy the error derivative:
// (assuming we already got softmax-cross-entropy derivative in out_diff)
in_diff->CopyFromMat(out_diff);
// Set the derivatives to zero for the matrix-lines in which
// the sum of 'derivatives' was 1.0 (i.e. there was no target):
for (int32 bl = 0; bl < block_dims.size(); bl++) {
// get the block,
CuSubMatrix<BaseFloat> diff_bl =
in_diff->ColRange(block_offset[bl], block_dims[bl]);
// get the sum of each row,
CuVector<BaseFloat> row_sum(diff_bl.NumRows());
row_sum.AddColSumMat(1.0, diff_bl, 0.0); // 0: keep as-is, 1: zero-out
// we'll scale rows by 0/1 masks,
CuVector<BaseFloat> row_diff_mask(row_sum);
row_diff_mask.Scale(-1.0); // 0: keep as-is, -1: zero-out
row_diff_mask.Add(1.0); // 1: keep as-is, 0: zero-out
// here we should have only 0's and 1's,
diff_bl.MulRowsVec(row_diff_mask);
}
}
std::string Info() const {
return "\n softmax-dims " + ToString(block_dims);
}
std::vector<int32> block_dims;
std::vector<int32> block_offset;
};
class Sigmoid : public Component {
public:
Sigmoid(int32 dim_in, int32 dim_out):
Component(dim_in, dim_out)
{ }
~Sigmoid()
{ }
Component* Copy() const { return new Sigmoid(*this); }
ComponentType GetType() const { return kSigmoid; }
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
// y = 1/(1+e^-x)
out->Sigmoid(in);
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
// ey = y(1-y)ex,
in_diff->DiffSigmoid(out, out_diff);
}
};
class Tanh : public Component {
public:
Tanh(int32 dim_in, int32 dim_out):
Component(dim_in, dim_out)
{ }
~Tanh()
{ }
Component* Copy() const { return new Tanh(*this); }
ComponentType GetType() const { return kTanh; }
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
// y = (e^x - e^(-x)) / (e^x + e^(-x)),
out->Tanh(in);
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
// ey = (1 - y^2)ex
in_diff->DiffTanh(out, out_diff);
}
};
class Dropout : public Component {
public:
Dropout(int32 dim_in, int32 dim_out):
Component(dim_in, dim_out),
dropout_rate_(0.5)
{ }
~Dropout()
{ }
Component* Copy() const { return new Dropout(*this); }
ComponentType GetType() const { return kDropout; }
void InitData(std::istream &is) {
is >> std::ws; // eat-up whitespace
// parse config
std::string token;
while (is >> std::ws, !is.eof()) {
ReadToken(is, false, &token);
/**/ if (token == "<DropoutRate>") ReadBasicType(is, false, &dropout_rate_);
else KALDI_ERR << "Unknown token " << token << ", a typo in config?"
<< " (DropoutRate)";
}
KALDI_ASSERT(dropout_rate_ >= 0.0 && dropout_rate_ < 1.0);
}
void ReadData(std::istream &is, bool binary) {
// Read all the '<Tokens>' in arbitrary order,
bool finished = false;
while ('<' == Peek(is, binary) && !finished) {
std::string token;
int first_char = PeekToken(is, binary);
switch (first_char) {
case 'D': ReadToken(is, false, &token);
/**/ if (token == "<DropoutRate>") ReadBasicType(is, binary, &dropout_rate_);
else if (token == "<DropoutRetention>") { /* compatibility */
BaseFloat dropout_retention;
ReadBasicType(is, binary, &dropout_retention);
dropout_rate_ = 1.0 - dropout_retention;
} else KALDI_ERR << "Unknown token: " << token;
break;
case '!': ExpectToken(is, binary, "<!EndOfComponent>");
finished = true;
break;
default: ReadToken(is, false, &token);
KALDI_ERR << "Unknown token: " << token;
}
}
KALDI_ASSERT(dropout_rate_ >= 0.0 && dropout_rate_ < 1.0);
}
void WriteData(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<DropoutRate>");
WriteBasicType(os, binary, dropout_rate_);
}
std::string Info() const {
return std::string("<DropoutRate> ") + ToString(dropout_rate_);
}
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
out->CopyFromMat(in);
// set N inputs to zero, according to the 'dropout_rate_' ...
dropout_mask_.Resize(out->NumRows(), out->NumCols());
rand_.RandUniform(&dropout_mask_); // [0..1]
dropout_mask_.Add(-dropout_rate_); // [(-rate)..(1-rate)]
dropout_mask_.Heaviside(dropout_mask_); // (x > 0.0 ? 1 : 0)
out->MulElements(dropout_mask_);
// rescale to keep the same dynamic range as w/o dropout,
out->Scale(1.0 / (1.0 - dropout_rate_));
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
in_diff->CopyFromMat(out_diff);
// use same mask on the error derivatives...
in_diff->MulElements(dropout_mask_);
// enlarge the output to fit same dynamic range as w/o dropout
in_diff->Scale(1.0 / (1.0 - dropout_rate_));
}
BaseFloat GetDropoutRate() { return dropout_rate_; }
void SetDropoutRate(BaseFloat dr) {
dropout_rate_ = dr;
KALDI_ASSERT(dropout_rate_ >= 0.0 && dropout_rate_ < 1.0);
}
private:
BaseFloat dropout_rate_; ///< probability that a neuron is dropped,
CuRand<BaseFloat> rand_; ///< generator of random numbers,
CuMatrix<BaseFloat> dropout_mask_; // random binary mask,
// 1 = keep neuron, 0 = drop neuron,
};
} // namespace nnet1
} // namespace kaldi
#endif // KALDI_NNET_NNET_ACTIVATION_H_