Blame view
src/nnet/nnet-linear-transform.h
6.9 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
// nnet/nnet-linear-transform.h // Copyright 2011-2014 Brno University of Technology (author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET_NNET_LINEAR_TRANSFORM_H_ #define KALDI_NNET_NNET_LINEAR_TRANSFORM_H_ #include <string> #include "nnet/nnet-component.h" #include "nnet/nnet-utils.h" #include "cudamatrix/cu-math.h" namespace kaldi { namespace nnet1 { class LinearTransform : public UpdatableComponent { public: LinearTransform(int32 dim_in, int32 dim_out): UpdatableComponent(dim_in, dim_out), linearity_(dim_out, dim_in), linearity_corr_(dim_out, dim_in) { } ~LinearTransform() { } Component* Copy() const { return new LinearTransform(*this); } ComponentType GetType() const { return kLinearTransform; } void InitData(std::istream &is) { // define options float param_stddev = 0.1; std::string read_matrix_file; // parse config std::string token; while (is >> std::ws, !is.eof()) { ReadToken(is, false, &token); /**/ if (token == "<ParamStddev>") ReadBasicType(is, false, ¶m_stddev); else if (token == "<ReadMatrix>") ReadToken(is, false, &read_matrix_file); else if (token == "<LearnRateCoef>") ReadBasicType(is, false, &learn_rate_coef_); else KALDI_ERR << "Unknown token " << token << ", a typo in config?" << " (ParamStddev|ReadMatrix|LearnRateCoef)"; } if (read_matrix_file != "") { // load from file, bool binary; Input in(read_matrix_file, &binary); linearity_.Read(in.Stream(), binary); in.Close(); // check dims, if (OutputDim() != linearity_.NumRows() || InputDim() != linearity_.NumCols()) { KALDI_ERR << "Dimensionality mismatch! Expected matrix" << " r=" << OutputDim() << " c=" << InputDim() << ", loaded matrix " << read_matrix_file << " with r=" << linearity_.NumRows() << " c=" << linearity_.NumCols(); } KALDI_LOG << "Loaded <LinearTransform> matrix from file : " << read_matrix_file; return; } // // Initialize trainable parameters, // // Gaussian with given std_dev (mean = 0), linearity_.Resize(OutputDim(), InputDim()); RandGauss(0.0, param_stddev, &linearity_); } void ReadData(std::istream &is, bool binary) { // Read all the '<Tokens>' in arbitrary order, while ('<' == Peek(is, binary)) { int first_char = PeekToken(is, binary); switch (first_char) { case 'L': ExpectToken(is, binary, "<LearnRateCoef>"); ReadBasicType(is, binary, &learn_rate_coef_); break; default: std::string token; ReadToken(is, false, &token); KALDI_ERR << "Unknown token: " << token; } } // Read the data (data follow the tokens), // weights linearity_.Read(is, binary); KALDI_ASSERT(linearity_.NumRows() == output_dim_); KALDI_ASSERT(linearity_.NumCols() == input_dim_); } void WriteData(std::ostream &os, bool binary) const { WriteToken(os, binary, "<LearnRateCoef>"); WriteBasicType(os, binary, learn_rate_coef_); if (!binary) os << " "; linearity_.Write(os, binary); } int32 NumParams() const { return linearity_.NumRows()*linearity_.NumCols(); } void GetGradient(VectorBase<BaseFloat>* gradient) const { KALDI_ASSERT(gradient->Dim() == NumParams()); gradient->CopyRowsFromMat(linearity_corr_); } void GetParams(VectorBase<BaseFloat>* params) const { KALDI_ASSERT(params->Dim() == NumParams()); params->CopyRowsFromMat(linearity_); } void SetParams(const VectorBase<BaseFloat>& params) { KALDI_ASSERT(params.Dim() == NumParams()); linearity_.CopyRowsFromVec(params); } void SetLinearity(const MatrixBase<BaseFloat>& l) { KALDI_ASSERT(l.NumCols() == linearity_.NumCols()); KALDI_ASSERT(l.NumRows() == linearity_.NumRows()); linearity_.CopyFromMat(l); } std::string Info() const { return std::string(" linearity") + MomentStatistics(linearity_) + ", lr-coef " + ToString(learn_rate_coef_); } std::string InfoGradient() const { return std::string(" linearity_grad") + MomentStatistics(linearity_corr_) + ", lr-coef " + ToString(learn_rate_coef_); } void PropagateFnc(const CuMatrixBase<BaseFloat> &in, CuMatrixBase<BaseFloat> *out) { // multiply by weights^t out->AddMatMat(1.0, in, kNoTrans, linearity_, kTrans, 0.0); } void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in, const CuMatrixBase<BaseFloat> &out, const CuMatrixBase<BaseFloat> &out_diff, CuMatrixBase<BaseFloat> *in_diff) { // multiply error derivative by weights in_diff->AddMatMat(1.0, out_diff, kNoTrans, linearity_, kNoTrans, 0.0); } void Update(const CuMatrixBase<BaseFloat> &input, const CuMatrixBase<BaseFloat> &diff) { // we use following hyperparameters from the option class const BaseFloat lr = opts_.learn_rate; const BaseFloat mmt = opts_.momentum; const BaseFloat l2 = opts_.l2_penalty; const BaseFloat l1 = opts_.l1_penalty; // we will also need the number of frames in the mini-batch const int32 num_frames = input.NumRows(); // compute gradient (incl. momentum) linearity_corr_.AddMatMat(1.0, diff, kTrans, input, kNoTrans, mmt); // l2 regularization if (l2 != 0.0) { linearity_.AddMat(-lr*l2*num_frames, linearity_); } // l1 regularization if (l1 != 0.0) { cu::RegularizeL1(&linearity_, &linearity_corr_, lr*l1*num_frames, lr); } // update linearity_.AddMat(-lr*learn_rate_coef_, linearity_corr_); } /// Accessors to the component parameters const CuMatrixBase<BaseFloat>& GetLinearity() { return linearity_; } void SetLinearity(const CuMatrixBase<BaseFloat>& linearity) { KALDI_ASSERT(linearity.NumRows() == linearity_.NumRows()); KALDI_ASSERT(linearity.NumCols() == linearity_.NumCols()); linearity_.CopyFromMat(linearity); } const CuMatrixBase<BaseFloat>& GetLinearityCorr() { return linearity_corr_; } private: CuMatrix<BaseFloat> linearity_; CuMatrix<BaseFloat> linearity_corr_; }; } // namespace nnet1 } // namespace kaldi #endif // KALDI_NNET_NNET_LINEAR_TRANSFORM_H_ |