nnet-linear-transform.h
6.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// nnet/nnet-linear-transform.h
// Copyright 2011-2014 Brno University of Technology (author: Karel Vesely)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET_NNET_LINEAR_TRANSFORM_H_
#define KALDI_NNET_NNET_LINEAR_TRANSFORM_H_
#include <string>
#include "nnet/nnet-component.h"
#include "nnet/nnet-utils.h"
#include "cudamatrix/cu-math.h"
namespace kaldi {
namespace nnet1 {
class LinearTransform : public UpdatableComponent {
public:
LinearTransform(int32 dim_in, int32 dim_out):
UpdatableComponent(dim_in, dim_out),
linearity_(dim_out, dim_in),
linearity_corr_(dim_out, dim_in)
{ }
~LinearTransform()
{ }
Component* Copy() const { return new LinearTransform(*this); }
ComponentType GetType() const { return kLinearTransform; }
void InitData(std::istream &is) {
// define options
float param_stddev = 0.1;
std::string read_matrix_file;
// parse config
std::string token;
while (is >> std::ws, !is.eof()) {
ReadToken(is, false, &token);
/**/ if (token == "<ParamStddev>") ReadBasicType(is, false, ¶m_stddev);
else if (token == "<ReadMatrix>") ReadToken(is, false, &read_matrix_file);
else if (token == "<LearnRateCoef>") ReadBasicType(is, false, &learn_rate_coef_);
else KALDI_ERR << "Unknown token " << token << ", a typo in config?"
<< " (ParamStddev|ReadMatrix|LearnRateCoef)";
}
if (read_matrix_file != "") { // load from file,
bool binary;
Input in(read_matrix_file, &binary);
linearity_.Read(in.Stream(), binary);
in.Close();
// check dims,
if (OutputDim() != linearity_.NumRows() ||
InputDim() != linearity_.NumCols()) {
KALDI_ERR << "Dimensionality mismatch! Expected matrix"
<< " r=" << OutputDim() << " c=" << InputDim()
<< ", loaded matrix " << read_matrix_file
<< " with r=" << linearity_.NumRows()
<< " c=" << linearity_.NumCols();
}
KALDI_LOG << "Loaded <LinearTransform> matrix from file : "
<< read_matrix_file;
return;
}
//
// Initialize trainable parameters,
//
// Gaussian with given std_dev (mean = 0),
linearity_.Resize(OutputDim(), InputDim());
RandGauss(0.0, param_stddev, &linearity_);
}
void ReadData(std::istream &is, bool binary) {
// Read all the '<Tokens>' in arbitrary order,
while ('<' == Peek(is, binary)) {
int first_char = PeekToken(is, binary);
switch (first_char) {
case 'L': ExpectToken(is, binary, "<LearnRateCoef>");
ReadBasicType(is, binary, &learn_rate_coef_);
break;
default:
std::string token;
ReadToken(is, false, &token);
KALDI_ERR << "Unknown token: " << token;
}
}
// Read the data (data follow the tokens),
// weights
linearity_.Read(is, binary);
KALDI_ASSERT(linearity_.NumRows() == output_dim_);
KALDI_ASSERT(linearity_.NumCols() == input_dim_);
}
void WriteData(std::ostream &os, bool binary) const {
WriteToken(os, binary, "<LearnRateCoef>");
WriteBasicType(os, binary, learn_rate_coef_);
if (!binary) os << "\n";
linearity_.Write(os, binary);
}
int32 NumParams() const {
return linearity_.NumRows()*linearity_.NumCols();
}
void GetGradient(VectorBase<BaseFloat>* gradient) const {
KALDI_ASSERT(gradient->Dim() == NumParams());
gradient->CopyRowsFromMat(linearity_corr_);
}
void GetParams(VectorBase<BaseFloat>* params) const {
KALDI_ASSERT(params->Dim() == NumParams());
params->CopyRowsFromMat(linearity_);
}
void SetParams(const VectorBase<BaseFloat>& params) {
KALDI_ASSERT(params.Dim() == NumParams());
linearity_.CopyRowsFromVec(params);
}
void SetLinearity(const MatrixBase<BaseFloat>& l) {
KALDI_ASSERT(l.NumCols() == linearity_.NumCols());
KALDI_ASSERT(l.NumRows() == linearity_.NumRows());
linearity_.CopyFromMat(l);
}
std::string Info() const {
return std::string("\n linearity") +
MomentStatistics(linearity_) +
", lr-coef " + ToString(learn_rate_coef_);
}
std::string InfoGradient() const {
return std::string("\n linearity_grad") +
MomentStatistics(linearity_corr_) +
", lr-coef " + ToString(learn_rate_coef_);
}
void PropagateFnc(const CuMatrixBase<BaseFloat> &in,
CuMatrixBase<BaseFloat> *out) {
// multiply by weights^t
out->AddMatMat(1.0, in, kNoTrans, linearity_, kTrans, 0.0);
}
void BackpropagateFnc(const CuMatrixBase<BaseFloat> &in,
const CuMatrixBase<BaseFloat> &out,
const CuMatrixBase<BaseFloat> &out_diff,
CuMatrixBase<BaseFloat> *in_diff) {
// multiply error derivative by weights
in_diff->AddMatMat(1.0, out_diff, kNoTrans, linearity_, kNoTrans, 0.0);
}
void Update(const CuMatrixBase<BaseFloat> &input,
const CuMatrixBase<BaseFloat> &diff) {
// we use following hyperparameters from the option class
const BaseFloat lr = opts_.learn_rate;
const BaseFloat mmt = opts_.momentum;
const BaseFloat l2 = opts_.l2_penalty;
const BaseFloat l1 = opts_.l1_penalty;
// we will also need the number of frames in the mini-batch
const int32 num_frames = input.NumRows();
// compute gradient (incl. momentum)
linearity_corr_.AddMatMat(1.0, diff, kTrans, input, kNoTrans, mmt);
// l2 regularization
if (l2 != 0.0) {
linearity_.AddMat(-lr*l2*num_frames, linearity_);
}
// l1 regularization
if (l1 != 0.0) {
cu::RegularizeL1(&linearity_, &linearity_corr_, lr*l1*num_frames, lr);
}
// update
linearity_.AddMat(-lr*learn_rate_coef_, linearity_corr_);
}
/// Accessors to the component parameters
const CuMatrixBase<BaseFloat>& GetLinearity() { return linearity_; }
void SetLinearity(const CuMatrixBase<BaseFloat>& linearity) {
KALDI_ASSERT(linearity.NumRows() == linearity_.NumRows());
KALDI_ASSERT(linearity.NumCols() == linearity_.NumCols());
linearity_.CopyFromMat(linearity);
}
const CuMatrixBase<BaseFloat>& GetLinearityCorr() { return linearity_corr_; }
private:
CuMatrix<BaseFloat> linearity_;
CuMatrix<BaseFloat> linearity_corr_;
};
} // namespace nnet1
} // namespace kaldi
#endif // KALDI_NNET_NNET_LINEAR_TRANSFORM_H_