Blame view
src/nnet/nnet-randomizer.h
6.98 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
// nnet/nnet-randomizer.h // Copyright 2013 Brno University of Technology (author: Karel Vesely) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET_NNET_RANDOMIZER_H_ #define KALDI_NNET_NNET_RANDOMIZER_H_ #include <utility> #include <vector> #include "base/kaldi-math.h" #include "itf/options-itf.h" #include "cudamatrix/cu-matrix.h" #include "cudamatrix/cu-math.h" namespace kaldi { namespace nnet1 { /** * Configuration variables that affect how frame-level shuffling is done. */ struct NnetDataRandomizerOptions { int32 randomizer_size; ///< Maximum number of samples we have in memory, int32 randomizer_seed; int32 minibatch_size; NnetDataRandomizerOptions(): randomizer_size(32768), randomizer_seed(777), minibatch_size(256) { } void Register(OptionsItf *opts) { opts->Register("randomizer-size", &randomizer_size, "Capacity of randomizer, length of concatenated utterances which, " "are used for frame-level shuffling (in frames, affects memory " "consumption, max 8000000)."); opts->Register("randomizer-seed", &randomizer_seed, "Seed value for srand, sets fixed order of frame-level shuffling"); opts->Register("minibatch-size", &minibatch_size, "Size of a minibatch."); } }; /** * Generates randomly ordered vector of indices, */ class RandomizerMask { public: RandomizerMask() { } explicit RandomizerMask(const NnetDataRandomizerOptions &conf) { Init(conf); } /// Init, call srand, void Init(const NnetDataRandomizerOptions& conf); /// Generate randomly ordered vector of integers 0..[mask_size -1], const std::vector<int32>& Generate(int32 mask_size); private: std::vector<int32> mask_; }; /** * Shuffles rows of a matrix according to the indices in the mask, */ class MatrixRandomizer { public: MatrixRandomizer(): data_begin_(0), data_end_(0) { } explicit MatrixRandomizer(const NnetDataRandomizerOptions &conf): data_begin_(0), data_end_(0) { Init(conf); } /// Set the randomizer parameters (size) void Init(const NnetDataRandomizerOptions& conf) { conf_ = conf; } /// Add data to randomization buffer void AddData(const CuMatrixBase<BaseFloat>& m); /// Returns true, when capacity is full bool IsFull() { return ((data_begin_ == 0) && (data_end_ > conf_.randomizer_size )); } /// Number of frames stored inside the Randomizer int32 NumFrames() { return data_end_; } /// Randomize matrix row-order using mask void Randomize(const std::vector<int32>& mask); /// Returns true, if no more data for another mini-batch (after current one) bool Done() { return (data_end_ - data_begin_ < conf_.minibatch_size); } /// Sets cursor to next mini-batch void Next(); /// Returns matrix-window with next mini-batch const CuMatrixBase<BaseFloat>& Value(); private: CuMatrix<BaseFloat> data_; // can be larger than 'randomizer_size' CuMatrix<BaseFloat> data_aux_; // auxiliary buffer for shuffling CuMatrix<BaseFloat> minibatch_; // buffer for mini-batch /// A cursor, pointing to the 'row' where the next mini-batch begins, int32 data_begin_; /// A cursor, pointing to the 'row' after the end of data, int32 data_end_; NnetDataRandomizerOptions conf_; }; /// Randomizes elements of a vector according to a mask class VectorRandomizer { public: VectorRandomizer(): data_begin_(0), data_end_(0) { } explicit VectorRandomizer(const NnetDataRandomizerOptions &conf): data_begin_(0), data_end_(0) { Init(conf); } /// Set the randomizer parameters (size) void Init(const NnetDataRandomizerOptions& conf) { conf_ = conf; } /// Add data to randomization buffer void AddData(const Vector<BaseFloat>& v); /// Returns true, when capacity is full bool IsFull() { return ((data_begin_ == 0) && (data_end_ > conf_.randomizer_size )); } /// Number of frames stored inside the Randomizer int32 NumFrames() { return data_end_; } /// Randomize matrix row-order using mask void Randomize(const std::vector<int32>& mask); /// Returns true, if no more data for another mini-batch (after current one) bool Done() { return (data_end_ - data_begin_ < conf_.minibatch_size); } /// Sets cursor to next mini-batch void Next(); /// Returns matrix-window with next mini-batch const Vector<BaseFloat>& Value(); private: Vector<BaseFloat> data_; // can be larger than 'randomizer_size' Vector<BaseFloat> minibatch_; // buffer for mini-batch /// A cursor, pointing to the 'row' where the next mini-batch begins, int32 data_begin_; /// A cursor, pointing to the 'row' after the end of data, int32 data_end_; NnetDataRandomizerOptions conf_; }; /// Randomizes elements of a vector according to a mask template<typename T> class StdVectorRandomizer { public: StdVectorRandomizer(): data_begin_(0), data_end_(0) { } explicit StdVectorRandomizer(const NnetDataRandomizerOptions &conf): data_begin_(0), data_end_(0) { Init(conf); } /// Set the randomizer parameters (size) void Init(const NnetDataRandomizerOptions& conf) { conf_ = conf; } /// Add data to randomization buffer void AddData(const std::vector<T>& v); /// Returns true, when capacity is full bool IsFull() { return ((data_begin_ == 0) && (data_end_ > conf_.randomizer_size )); } /// Number of frames stored inside the Randomizer int32 NumFrames() { return data_end_; } /// Randomize matrix row-order using mask void Randomize(const std::vector<int32>& mask); /// Returns true, if no more data for another mini-batch (after current one) bool Done() { return (data_end_ - data_begin_ < conf_.minibatch_size); } /// Sets cursor to next mini-batch void Next(); /// Returns matrix-window with next mini-batch const std::vector<T>& Value(); private: std::vector<T> data_; // can be larger than 'randomizer_size' std::vector<T> minibatch_; // buffer for mini-batch /// A cursor, pointing to the 'row' where the next mini-batch begins, int32 data_begin_; /// A cursor, pointing to the 'row' after the end of data, int32 data_end_; NnetDataRandomizerOptions conf_; }; typedef StdVectorRandomizer<int32> Int32VectorRandomizer; typedef StdVectorRandomizer<std::vector<std::pair<int32, BaseFloat> > > PosteriorRandomizer; } // namespace nnet1 } // namespace kaldi #endif // KALDI_NNET_NNET_RANDOMIZER_H_ |