nnet-randomizer.h
6.98 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
// nnet/nnet-randomizer.h
// Copyright 2013 Brno University of Technology (author: Karel Vesely)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_NNET_NNET_RANDOMIZER_H_
#define KALDI_NNET_NNET_RANDOMIZER_H_
#include <utility>
#include <vector>
#include "base/kaldi-math.h"
#include "itf/options-itf.h"
#include "cudamatrix/cu-matrix.h"
#include "cudamatrix/cu-math.h"
namespace kaldi {
namespace nnet1 {
/**
* Configuration variables that affect how frame-level shuffling is done.
*/
struct NnetDataRandomizerOptions {
int32 randomizer_size; ///< Maximum number of samples we have in memory,
int32 randomizer_seed;
int32 minibatch_size;
NnetDataRandomizerOptions():
randomizer_size(32768),
randomizer_seed(777),
minibatch_size(256)
{ }
void Register(OptionsItf *opts) {
opts->Register("randomizer-size", &randomizer_size,
"Capacity of randomizer, length of concatenated utterances which, "
"are used for frame-level shuffling (in frames, affects memory "
"consumption, max 8000000).");
opts->Register("randomizer-seed", &randomizer_seed,
"Seed value for srand, sets fixed order of frame-level shuffling");
opts->Register("minibatch-size", &minibatch_size, "Size of a minibatch.");
}
};
/**
* Generates randomly ordered vector of indices,
*/
class RandomizerMask {
public:
RandomizerMask()
{ }
explicit RandomizerMask(const NnetDataRandomizerOptions &conf) {
Init(conf);
}
/// Init, call srand,
void Init(const NnetDataRandomizerOptions& conf);
/// Generate randomly ordered vector of integers 0..[mask_size -1],
const std::vector<int32>& Generate(int32 mask_size);
private:
std::vector<int32> mask_;
};
/**
* Shuffles rows of a matrix according to the indices in the mask,
*/
class MatrixRandomizer {
public:
MatrixRandomizer():
data_begin_(0),
data_end_(0)
{ }
explicit MatrixRandomizer(const NnetDataRandomizerOptions &conf):
data_begin_(0),
data_end_(0)
{
Init(conf);
}
/// Set the randomizer parameters (size)
void Init(const NnetDataRandomizerOptions& conf) {
conf_ = conf;
}
/// Add data to randomization buffer
void AddData(const CuMatrixBase<BaseFloat>& m);
/// Returns true, when capacity is full
bool IsFull() {
return ((data_begin_ == 0) && (data_end_ > conf_.randomizer_size ));
}
/// Number of frames stored inside the Randomizer
int32 NumFrames() {
return data_end_;
}
/// Randomize matrix row-order using mask
void Randomize(const std::vector<int32>& mask);
/// Returns true, if no more data for another mini-batch (after current one)
bool Done() {
return (data_end_ - data_begin_ < conf_.minibatch_size);
}
/// Sets cursor to next mini-batch
void Next();
/// Returns matrix-window with next mini-batch
const CuMatrixBase<BaseFloat>& Value();
private:
CuMatrix<BaseFloat> data_; // can be larger than 'randomizer_size'
CuMatrix<BaseFloat> data_aux_; // auxiliary buffer for shuffling
CuMatrix<BaseFloat> minibatch_; // buffer for mini-batch
/// A cursor, pointing to the 'row' where the next mini-batch begins,
int32 data_begin_;
/// A cursor, pointing to the 'row' after the end of data,
int32 data_end_;
NnetDataRandomizerOptions conf_;
};
/// Randomizes elements of a vector according to a mask
class VectorRandomizer {
public:
VectorRandomizer():
data_begin_(0),
data_end_(0)
{ }
explicit VectorRandomizer(const NnetDataRandomizerOptions &conf):
data_begin_(0),
data_end_(0)
{
Init(conf);
}
/// Set the randomizer parameters (size)
void Init(const NnetDataRandomizerOptions& conf) {
conf_ = conf;
}
/// Add data to randomization buffer
void AddData(const Vector<BaseFloat>& v);
/// Returns true, when capacity is full
bool IsFull() {
return ((data_begin_ == 0) && (data_end_ > conf_.randomizer_size ));
}
/// Number of frames stored inside the Randomizer
int32 NumFrames() {
return data_end_;
}
/// Randomize matrix row-order using mask
void Randomize(const std::vector<int32>& mask);
/// Returns true, if no more data for another mini-batch (after current one)
bool Done() {
return (data_end_ - data_begin_ < conf_.minibatch_size);
}
/// Sets cursor to next mini-batch
void Next();
/// Returns matrix-window with next mini-batch
const Vector<BaseFloat>& Value();
private:
Vector<BaseFloat> data_; // can be larger than 'randomizer_size'
Vector<BaseFloat> minibatch_; // buffer for mini-batch
/// A cursor, pointing to the 'row' where the next mini-batch begins,
int32 data_begin_;
/// A cursor, pointing to the 'row' after the end of data,
int32 data_end_;
NnetDataRandomizerOptions conf_;
};
/// Randomizes elements of a vector according to a mask
template<typename T>
class StdVectorRandomizer {
public:
StdVectorRandomizer():
data_begin_(0),
data_end_(0)
{ }
explicit StdVectorRandomizer(const NnetDataRandomizerOptions &conf):
data_begin_(0),
data_end_(0)
{
Init(conf);
}
/// Set the randomizer parameters (size)
void Init(const NnetDataRandomizerOptions& conf) {
conf_ = conf;
}
/// Add data to randomization buffer
void AddData(const std::vector<T>& v);
/// Returns true, when capacity is full
bool IsFull() {
return ((data_begin_ == 0) && (data_end_ > conf_.randomizer_size ));
}
/// Number of frames stored inside the Randomizer
int32 NumFrames() {
return data_end_;
}
/// Randomize matrix row-order using mask
void Randomize(const std::vector<int32>& mask);
/// Returns true, if no more data for another mini-batch (after current one)
bool Done() {
return (data_end_ - data_begin_ < conf_.minibatch_size);
}
/// Sets cursor to next mini-batch
void Next();
/// Returns matrix-window with next mini-batch
const std::vector<T>& Value();
private:
std::vector<T> data_; // can be larger than 'randomizer_size'
std::vector<T> minibatch_; // buffer for mini-batch
/// A cursor, pointing to the 'row' where the next mini-batch begins,
int32 data_begin_;
/// A cursor, pointing to the 'row' after the end of data,
int32 data_end_;
NnetDataRandomizerOptions conf_;
};
typedef StdVectorRandomizer<int32> Int32VectorRandomizer;
typedef StdVectorRandomizer<std::vector<std::pair<int32, BaseFloat> > > PosteriorRandomizer;
} // namespace nnet1
} // namespace kaldi
#endif // KALDI_NNET_NNET_RANDOMIZER_H_