Blame view

src/nnet2bin/nnet-compute-prob.cc 3.62 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
  // nnet2bin/nnet-compute-prob.cc
  
  // Copyright 2012  Johns Hopkins University (author:  Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "hmm/transition-model.h"
  #include "nnet2/train-nnet.h"
  #include "nnet2/am-nnet.h"
  
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using namespace kaldi::nnet2;
      typedef kaldi::int32 int32;
      typedef kaldi::int64 int64;
  
      const char *usage =
          "Computes and prints the average log-prob per frame of the given data with a
  "
          "neural net.  The input of this is the output of e.g. nnet-get-egs
  "
          "Aside from the logging output, which goes to the standard error, this program
  "
          "prints the average log-prob per frame to the standard output.
  "
          "Also see nnet-logprob, which produces a matrix of log-probs for each utterance.
  "
          "
  "
          "Usage:  nnet-compute-prob [options] <model-in> <training-examples-in>
  "
          "e.g.: nnet-compute-prob 1.nnet ark:valid.egs
  ";
      
      ParseOptions po(usage);
  
      po.Read(argc, argv);
      
      if (po.NumArgs() != 2) {
        po.PrintUsage();
        exit(1);
      }
      
      std::string nnet_rxfilename = po.GetArg(1),
          examples_rspecifier = po.GetArg(2);
  
      TransitionModel trans_model;
      AmNnet am_nnet;
      {
        bool binary_read;
        Input ki(nnet_rxfilename, &binary_read);
        trans_model.Read(ki.Stream(), binary_read);
        am_nnet.Read(ki.Stream(), binary_read);
      }
  
  
      std::vector<NnetExample> examples;
      double tot_weight = 0.0, tot_like = 0.0, tot_accuracy = 0.0;
      int64 num_examples = 0;
      SequentialNnetExampleReader example_reader(examples_rspecifier);
      for (; !example_reader.Done(); example_reader.Next(), num_examples++) {
        if (examples.size() == 1000) {
          double accuracy;
          tot_like += ComputeNnetObjf(am_nnet.GetNnet(), examples, &accuracy);
          tot_accuracy += accuracy;
          tot_weight += TotalNnetTrainingWeight(examples);
          examples.clear();
        }
        examples.push_back(example_reader.Value());
        if (num_examples % 5000 == 0 && num_examples > 0)
          KALDI_LOG << "Saw " << num_examples << " examples, average "
                    << "probability is " << (tot_like / num_examples) << " with "
                    << "total weight " << num_examples;
      }
      if (!examples.empty()) {
        double accuracy;
        tot_like += ComputeNnetObjf(am_nnet.GetNnet(), examples, &accuracy);
        tot_accuracy += accuracy;      
        tot_weight += TotalNnetTrainingWeight(examples);
      }
  
      KALDI_LOG << "Saw " << num_examples << " examples, average "
                << "probability is " << (tot_like / tot_weight)
                << " and accuracy is " << (tot_accuracy / tot_weight) << " with "
                << "total weight " << tot_weight;
      
      std::cout << (tot_like / tot_weight) << "
  ";
      return (num_examples == 0 ? 1 : 0);
    } catch(const std::exception &e) {
      std::cerr << e.what() << '
  ';
      return -1;
    }
  }