Blame view

src/nnet3/convolution-test.cc 16.6 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
  // nnet3/convolution-test.cc
  
  // Copyright 2017    Johns Hopkins University (author:  Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "nnet3/convolution.h"
  #include "util/common-utils.h"
  
  namespace kaldi {
  namespace nnet3 {
  namespace time_height_convolution {
  
  // for testing purposes, create a random ConvolutionModel.
  static void GetRandomConvolutionModel(ConvolutionModel *model) {
  start:
    {
      model->num_filters_in = RandInt(1, 10);
      model->num_filters_out = RandInt(1, 10);
      model->height_in = RandInt(1, 10);
      int32 min_height_offset = RandInt(-2, 0),
          max_height_offset = RandInt(0, 2),
          min_time_offset = RandInt(-2, 0),
          max_time_offset = RandInt(0, 2);
  
      model->height_out = RandInt(1, model->height_in);
      model->height_subsample_out = 1;
      if (RandInt(0, 1) == 0) {
        if (model->height_out % 2 == 0) {
          model->height_out /= 2;
          model->height_subsample_out = 2;
        } else if (model->height_out % 3 == 0) {
          model->height_out /= 3;
          model->height_subsample_out = 3;
        }
      }
      std::vector<int32> all_time_offsets;
      int32 max_offsets = RandInt(1, 10);
      model->offsets.clear();
      model->required_time_offsets.clear();
      for (int32 i = 0; i < max_offsets; i++) {
        ConvolutionModel::Offset o;
        o.time_offset = RandInt(min_time_offset, max_time_offset);
        o.height_offset = RandInt(min_height_offset, max_height_offset);
        all_time_offsets.push_back(o.time_offset);
        model->offsets.push_back(o);
      }
      SortAndUniq(&(model->offsets));
      SortAndUniq(&all_time_offsets);
      std::random_shuffle(all_time_offsets.begin(), all_time_offsets.end());
      int32 num_required_offsets = RandInt(1, all_time_offsets.size());
      for (int32 i = 0; i < num_required_offsets; i++)
        model->required_time_offsets.insert(all_time_offsets[i]);
      model->ComputeDerived();
    }
    if (!model->Check()) {
      KALDI_WARN << "Regenerating model because it didn't pass the check: "
                 << model->Info();
      goto start;
    }
  }
  
  // for testing purposes, create a set of input and output indexes for
  // a convolution computation that are computable given this model.
  static void GetRandomConvolutionIndexes(const ConvolutionModel &model,
                                          std::vector<Index> *input_indexes,
                                          std::vector<Index> *output_indexes) {
    KALDI_ASSERT(model.Check());
  
    std::vector<std::pair<int32, int32> > n_x_pairs;
    int32 num_n_x_pairs = RandInt(1, 3);
    for (int32 i = 0; i < num_n_x_pairs; i++) {
      int32 n = RandInt(0, 3), x = RandInt(0, 1);
      n_x_pairs.push_back(std::pair<int32, int32>(n, x));
    }
    SortAndUniq(&n_x_pairs);
    num_n_x_pairs = n_x_pairs.size();
  
  
    // 'output_t_values' is the set of *possible* output
    // t values; we'll later sub-sample from these.
    std::vector<int32> output_t_values;
  
    {
      int32 out_t_start = RandInt(-5, 5), out_t_step = RandInt(1, 3),
          num_t_out = RandInt(1, 4);
      for (int32 i = 0; i < num_t_out; i++)
        output_t_values.push_back(out_t_start + i * out_t_step);
    }
  
    input_indexes->clear();
    output_indexes->clear();
    for (size_t i = 0; i < n_x_pairs.size(); i++) {
      std::vector<int32> chosen_output_t_values;
      while (chosen_output_t_values.empty()) {
        for (size_t j = 0; j < output_t_values.size(); j++)
          if (RandInt(0, 1) != 0)
            chosen_output_t_values.push_back(output_t_values[j]);
      }
      KALDI_ASSERT(IsSortedAndUniq(chosen_output_t_values));
  
      std::set<int32> required_input_t_values,
          usable_input_t_values;
      for (size_t j = 0; j < chosen_output_t_values.size(); j++) {
        std::set<int32>::const_iterator iter;
        int32 t_out = chosen_output_t_values[j];
        for (iter = model.required_time_offsets.begin();
             iter != model.required_time_offsets.end(); iter++) {
          int32 offset = *iter;
          required_input_t_values.insert(t_out + offset);
        }
        for (iter = model.all_time_offsets.begin();
             iter != model.all_time_offsets.end(); iter++) {
          int32 offset = *iter;
          usable_input_t_values.insert(t_out + offset);
        }
      }
  
      // add to output_indexes
      for (size_t j = 0; j < chosen_output_t_values.size(); j++) {
        int32 t_out = chosen_output_t_values[j];
        Index index;
        index.n = n_x_pairs[i].first;
        index.x = n_x_pairs[i].second;
        index.t = t_out;
        output_indexes->push_back(index);
      }
  
      std::vector<int32> chosen_input_t_values(required_input_t_values.begin(),
                                               required_input_t_values.end());
      for (std::set<int32>::const_iterator iter = usable_input_t_values.begin();
           iter != usable_input_t_values.end(); ++iter) {
        int32 t = *iter;
        if (RandInt(0, 1) == 0)
          chosen_input_t_values.push_back(t);
      }
      SortAndUniq(&chosen_input_t_values);
  
      // add to input_indexes
      for (size_t j = 0; j < chosen_input_t_values.size(); j++) {
        int32 t_in = chosen_input_t_values[j];
        Index index;
        index.n = n_x_pairs[i].first;
        index.x = n_x_pairs[i].second;
        index.t = t_in;
        input_indexes->push_back(index);
      }
    }
  }
  
  
  void UnitTestTimeHeightConvolutionIo() {
    for (int32 i = 0; i < 10; i++) {
      KALDI_LOG << "iter = " << i;
      // Create a ConvolutionModel and test its I/O.
      ConvolutionModel conv_model;
      GetRandomConvolutionModel(&conv_model);
      std::ostringstream os1, os2;
      bool binary = (RandInt(0, 1) == 0);
      conv_model.Write(os1, binary);
      std::istringstream is(os1.str());
      ConvolutionModel conv_model2;
      conv_model2.Read(is, binary);
      conv_model2.Write(os2, binary);
      KALDI_ASSERT(os1.str() == os2.str() && conv_model2.Check());
    }
  }
  
  void TestComputationIo(const ConvolutionComputation &computation) {
    std::ostringstream os1, os2;
    bool binary = (RandInt(0, 1) == 0);
    computation.Write(os1, binary);
    std::istringstream is(os1.str());
    ConvolutionComputation computation2;
    computation2.Read(is, binary);
    computation2.Write(os2, binary);
    KALDI_ASSERT(os1.str() == os2.str());
    computation2.Check();
  }
  
  
  // This function exects indexes.size() == matrix->NumRows();
  // it sets to zero any row i of the matrix for which
  // indexes[i].t == kNoTime.
  void ZeroBlankRows(const std::vector<Index> &indexes,
                     CuMatrix<BaseFloat> *matrix) {
    KALDI_ASSERT(static_cast<int32>(indexes.size()) == matrix->NumRows());
    int32 num_rows = matrix->NumRows();
    if (num_rows == 0) return;
    Vector<BaseFloat> mask(num_rows, kUndefined);
    mask.Set(1.0);
    const Index *indexes_ptr = &(indexes[0]);
    BaseFloat *mask_ptr = mask.Data();
    for (int32 r = 0; r < num_rows; r++) {
      if (indexes_ptr[r].t == kNoTime)
        mask_ptr[r] = 0.0;
    }
    CuVector<BaseFloat> cu_mask;
    cu_mask.Swap(&mask);
    matrix->MulRowsVec(cu_mask);
  }
  
  // This is a 'dumb' implementation of convolution, created to compare
  // with ConvolveForward.
  void ConvolveForwardSimple(
      const ConvolutionModel &model,
      const std::vector<Index> &input_indexes,
      const std::vector<Index> &output_indexes,
      const CuMatrixBase<BaseFloat> &input_cu,
      const CuMatrixBase<BaseFloat> &params_cu,
      CuMatrixBase<BaseFloat> *output_cu) {
    // these loops will be very slow on GPU, so do it all on CPU.
    Matrix<BaseFloat> input(input_cu), params(params_cu),
        output(*output_cu);
    std::unordered_map<Index, int32, IndexHasher> index_to_row;
    int32 input_rows = input.NumRows(),
        output_rows = output.NumRows();
    for (int32 r_in = 0; r_in < input_rows; r_in++) {
      if (input_indexes[r_in].t != kNoTime) {
        index_to_row[input_indexes[r_in]] = r_in;
      }
    }
    int32 num_offsets = model.offsets.size(),
        num_filters_in = model.num_filters_in,
        num_filters_out = model.num_filters_out,
        height_in = model.height_in,
        height_out = model.height_out,
        height_subsample_out = model.height_subsample_out;
    for (int32 r_out = 0; r_out < output_rows; r_out++) {
      Index index_out = output_indexes[r_out];
      if (index_out.t == kNoTime)
        continue;
      SubVector<BaseFloat> output_row(output, r_out);
      for (int32 o = 0; o < num_offsets; o++) {
        int32 time_offset = model.offsets[o].time_offset,
            height_offset = model.offsets[o].height_offset;
        Index index_in(index_out);
        index_in.t += time_offset;
        std::unordered_map<Index, int32, IndexHasher>::const_iterator iter =
            index_to_row.find(index_in);
        if (iter != index_to_row.end()) {
          SubMatrix<BaseFloat> params_part(params, 0, params.NumRows(),
                                           o * num_filters_in, num_filters_in);
          int32 r_in = iter->second;
          SubVector<BaseFloat> input_row(input, r_in);
          for (int32 h_out_subsampled = 0;
               h_out_subsampled < height_out;
               h_out_subsampled++) {
            int32 h_out = h_out_subsampled * height_subsample_out,
                h_in = h_out + height_offset;
            if (h_in < 0 || h_in >= height_in)
              continue;
            SubVector<BaseFloat> output_part(output_row,
                                             h_out_subsampled * num_filters_out,
                                             num_filters_out),
                input_part(input_row, h_in * num_filters_in, num_filters_in);
            output_part.AddMatVec(1.0, params_part, kNoTrans, input_part, 1.0);
          }
        }
      }
    }
    output_cu->CopyFromMat(output);
  }
  
  
  
  void TestRunningComputation(const ConvolutionModel &conv_model,
                              const std::vector<Index> &input_indexes,
                              const std::vector<Index> &output_indexes,
                              const ConvolutionComputation &computation) {
    CuMatrix<BaseFloat> input(input_indexes.size(), conv_model.InputDim(),
                              kSetZero, kStrideEqualNumCols),
        output(output_indexes.size(), conv_model.OutputDim(),
               kSetZero, kStrideEqualNumCols),
        output2(output),
        params(conv_model.ParamRows(), conv_model.ParamCols());
    input.SetRandn();
    params.SetRandn();
    ZeroBlankRows(input_indexes, &input);
    ConvolveForward(computation, input, params, &output);
    ZeroBlankRows(output_indexes, &output);
  
    ConvolveForwardSimple(conv_model, input_indexes, output_indexes,
                          input, params, &output2);
    KALDI_LOG << "Tested convolution for model: "
              << conv_model.Info();
    if (!output.ApproxEqual(output2, 0.001)) {
      KALDI_LOG << "Output is: " << output;
      KALDI_LOG << "Output2 is: " << output2;
      KALDI_ERR << "Convolution test failure.";
    }
  }
  
  
  void TestDataBackprop(const ConvolutionModel &conv_model,
                        const std::vector<Index> &input_indexes,
                        const std::vector<Index> &output_indexes,
                        const ConvolutionComputation &computation) {
    CuMatrix<BaseFloat>
        input_deriv(input_indexes.size(), conv_model.InputDim(),
                    kSetZero, kStrideEqualNumCols),
        input(input_indexes.size(), conv_model.InputDim(),
              kSetZero, kStrideEqualNumCols),
        output(output_indexes.size(), conv_model.OutputDim(),
               kSetZero, kStrideEqualNumCols),
        output_deriv(output_indexes.size(), conv_model.OutputDim(),
                     kSetZero, kStrideEqualNumCols),
        params(conv_model.ParamRows(), conv_model.ParamCols());
  
    input.SetRandn();
    params.SetRandn();
    output_deriv.SetRandn();
  
    ZeroBlankRows(output_indexes, &output_deriv);
    ConvolveBackwardData(computation, params, output_deriv, &input_deriv);
    ZeroBlankRows(input_indexes, &input_deriv);
    ZeroBlankRows(input_indexes, &input);
  
    // define the objf as TraceMatMat(output_deriv, output, kTrans).
    // we can work it out from the backpropagated data-derivative.
    BaseFloat expected_objf = TraceMatMat(input_deriv, input, kTrans);
  
    ConvolveForward(computation, input, params, &output);
    ZeroBlankRows(output_indexes, &output);
  
    BaseFloat observed_objf = TraceMatMat(output, output_deriv, kTrans);
  
    KALDI_LOG << "Expected objf = " << expected_objf
              << ", observed objf = " << observed_objf;
    if (!ApproxEqual(expected_objf, observed_objf, 0.1) &&
        fabs(expected_objf) < 1.0) {
      KALDI_ERR << "Difference in objf too large.";
    }
  }
  
  
  void TestParamsBackprop(const ConvolutionModel &conv_model,
                          const std::vector<Index> &input_indexes,
                          const std::vector<Index> &output_indexes,
                          const ConvolutionComputation &computation) {
    CuMatrix<BaseFloat>
        input(input_indexes.size(), conv_model.InputDim(),
              kSetZero, kStrideEqualNumCols),
        output(output_indexes.size(), conv_model.OutputDim(),
               kSetZero, kStrideEqualNumCols),
        output_deriv(output_indexes.size(), conv_model.OutputDim(),
                     kSetZero, kStrideEqualNumCols),
        params(conv_model.ParamRows(), conv_model.ParamCols()),
        params_deriv(conv_model.ParamRows(), conv_model.ParamCols());
  
    input.SetRandn();
    params.SetRandn();
    output_deriv.SetRandn();
  
    BaseFloat alpha = 0.5 * RandInt(1, 3);
  
    ZeroBlankRows(output_indexes, &output_deriv);
    ZeroBlankRows(input_indexes, &input);
  
    ConvolveBackwardParams(computation, input, output_deriv, alpha,
                           &params_deriv);
  
    BaseFloat expected_objf = TraceMatMat(params_deriv, params, kTrans) / alpha;
  
    ConvolveForward(computation, input, params, &output);
  
    ZeroBlankRows(output_indexes, &output);
  
    BaseFloat observed_objf = TraceMatMat(output, output_deriv, kTrans);
  
    KALDI_LOG << "Expected objf = " << expected_objf
              << ", observed objf = " << observed_objf;
    if (!ApproxEqual(expected_objf, observed_objf, 0.1) &&
        fabs(expected_objf) < 1.0) {
      KALDI_ERR << "Difference in objf too large.";
    }
  }
  
  
  
  void UnitTestTimeHeightConvolutionCompile() {
    for (int32 i = 0; i < 10; i++) {
      KALDI_LOG << "iter = " << i;
      // Create a ConvolutionModel
      ConvolutionModel conv_model;
      GetRandomConvolutionModel(&conv_model);
      std::vector<Index> input_indexes, output_indexes;
      GetRandomConvolutionIndexes(conv_model, &input_indexes, &output_indexes);
  
      ConvolutionComputationOptions opts;
      ConvolutionComputation computation;
      std::vector<Index> input_indexes_modified, output_indexes_modified;
      CompileConvolutionComputation(conv_model, input_indexes, output_indexes,
                                    opts, &computation,
                                    &input_indexes_modified,
                                    &output_indexes_modified);
      TestComputationIo(computation);
      TestRunningComputation(conv_model,
                             input_indexes_modified,
                             output_indexes_modified,
                             computation);
      TestDataBackprop(conv_model,
                       input_indexes_modified,
                       output_indexes_modified,
                       computation);
      TestParamsBackprop(conv_model,
                         input_indexes_modified,
                         output_indexes_modified,
                         computation);
      std::ostringstream os;
      os << "
  Input-indexes: ";
      WriteIndexVector(os, false, input_indexes);
      os << "
  Input-indexes-modified: ";
      WriteIndexVector(os, false, input_indexes_modified);
      os << "
  Output-indexes: ";
      WriteIndexVector(os, false, output_indexes);
      os << "
  Output-indexes-modified: ";
      WriteIndexVector(os, false, output_indexes_modified);
      KALDI_LOG << os.str();
    }
  }
  
  
  void UnitTestTimeHeightConvolution() {
    UnitTestTimeHeightConvolutionIo();
    UnitTestTimeHeightConvolutionCompile();
  }
  
  
  
  } // namespace time_height_convolution
  } // namespace nnet3
  } // namespace kaldi
  
  
  int main() {
    using namespace kaldi;
    using namespace kaldi::nnet3;
    using namespace kaldi::nnet3::time_height_convolution;
    for (int32 loop = 0; loop < 2; loop++) {
  #if HAVE_CUDA == 1
      CuDevice::Instantiate().SetDebugStrideMode(true);
      if (loop == 0)
        CuDevice::Instantiate().SelectGpuId("no"); // -1 means no GPU
      else
        CuDevice::Instantiate().SelectGpuId("optional"); // -2 .. automatic selection
  #endif
      for (int32 i = 0; i < 5; i++) {
        UnitTestTimeHeightConvolution();
      }
    }
  }