convolution-test.cc 16.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
// nnet3/convolution-test.cc

// Copyright 2017    Johns Hopkins University (author:  Daniel Povey)

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include "nnet3/convolution.h"
#include "util/common-utils.h"

namespace kaldi {
namespace nnet3 {
namespace time_height_convolution {

// for testing purposes, create a random ConvolutionModel.
static void GetRandomConvolutionModel(ConvolutionModel *model) {
start:
  {
    model->num_filters_in = RandInt(1, 10);
    model->num_filters_out = RandInt(1, 10);
    model->height_in = RandInt(1, 10);
    int32 min_height_offset = RandInt(-2, 0),
        max_height_offset = RandInt(0, 2),
        min_time_offset = RandInt(-2, 0),
        max_time_offset = RandInt(0, 2);

    model->height_out = RandInt(1, model->height_in);
    model->height_subsample_out = 1;
    if (RandInt(0, 1) == 0) {
      if (model->height_out % 2 == 0) {
        model->height_out /= 2;
        model->height_subsample_out = 2;
      } else if (model->height_out % 3 == 0) {
        model->height_out /= 3;
        model->height_subsample_out = 3;
      }
    }
    std::vector<int32> all_time_offsets;
    int32 max_offsets = RandInt(1, 10);
    model->offsets.clear();
    model->required_time_offsets.clear();
    for (int32 i = 0; i < max_offsets; i++) {
      ConvolutionModel::Offset o;
      o.time_offset = RandInt(min_time_offset, max_time_offset);
      o.height_offset = RandInt(min_height_offset, max_height_offset);
      all_time_offsets.push_back(o.time_offset);
      model->offsets.push_back(o);
    }
    SortAndUniq(&(model->offsets));
    SortAndUniq(&all_time_offsets);
    std::random_shuffle(all_time_offsets.begin(), all_time_offsets.end());
    int32 num_required_offsets = RandInt(1, all_time_offsets.size());
    for (int32 i = 0; i < num_required_offsets; i++)
      model->required_time_offsets.insert(all_time_offsets[i]);
    model->ComputeDerived();
  }
  if (!model->Check()) {
    KALDI_WARN << "Regenerating model because it didn't pass the check: "
               << model->Info();
    goto start;
  }
}

// for testing purposes, create a set of input and output indexes for
// a convolution computation that are computable given this model.
static void GetRandomConvolutionIndexes(const ConvolutionModel &model,
                                        std::vector<Index> *input_indexes,
                                        std::vector<Index> *output_indexes) {
  KALDI_ASSERT(model.Check());

  std::vector<std::pair<int32, int32> > n_x_pairs;
  int32 num_n_x_pairs = RandInt(1, 3);
  for (int32 i = 0; i < num_n_x_pairs; i++) {
    int32 n = RandInt(0, 3), x = RandInt(0, 1);
    n_x_pairs.push_back(std::pair<int32, int32>(n, x));
  }
  SortAndUniq(&n_x_pairs);
  num_n_x_pairs = n_x_pairs.size();


  // 'output_t_values' is the set of *possible* output
  // t values; we'll later sub-sample from these.
  std::vector<int32> output_t_values;

  {
    int32 out_t_start = RandInt(-5, 5), out_t_step = RandInt(1, 3),
        num_t_out = RandInt(1, 4);
    for (int32 i = 0; i < num_t_out; i++)
      output_t_values.push_back(out_t_start + i * out_t_step);
  }

  input_indexes->clear();
  output_indexes->clear();
  for (size_t i = 0; i < n_x_pairs.size(); i++) {
    std::vector<int32> chosen_output_t_values;
    while (chosen_output_t_values.empty()) {
      for (size_t j = 0; j < output_t_values.size(); j++)
        if (RandInt(0, 1) != 0)
          chosen_output_t_values.push_back(output_t_values[j]);
    }
    KALDI_ASSERT(IsSortedAndUniq(chosen_output_t_values));

    std::set<int32> required_input_t_values,
        usable_input_t_values;
    for (size_t j = 0; j < chosen_output_t_values.size(); j++) {
      std::set<int32>::const_iterator iter;
      int32 t_out = chosen_output_t_values[j];
      for (iter = model.required_time_offsets.begin();
           iter != model.required_time_offsets.end(); iter++) {
        int32 offset = *iter;
        required_input_t_values.insert(t_out + offset);
      }
      for (iter = model.all_time_offsets.begin();
           iter != model.all_time_offsets.end(); iter++) {
        int32 offset = *iter;
        usable_input_t_values.insert(t_out + offset);
      }
    }

    // add to output_indexes
    for (size_t j = 0; j < chosen_output_t_values.size(); j++) {
      int32 t_out = chosen_output_t_values[j];
      Index index;
      index.n = n_x_pairs[i].first;
      index.x = n_x_pairs[i].second;
      index.t = t_out;
      output_indexes->push_back(index);
    }

    std::vector<int32> chosen_input_t_values(required_input_t_values.begin(),
                                             required_input_t_values.end());
    for (std::set<int32>::const_iterator iter = usable_input_t_values.begin();
         iter != usable_input_t_values.end(); ++iter) {
      int32 t = *iter;
      if (RandInt(0, 1) == 0)
        chosen_input_t_values.push_back(t);
    }
    SortAndUniq(&chosen_input_t_values);

    // add to input_indexes
    for (size_t j = 0; j < chosen_input_t_values.size(); j++) {
      int32 t_in = chosen_input_t_values[j];
      Index index;
      index.n = n_x_pairs[i].first;
      index.x = n_x_pairs[i].second;
      index.t = t_in;
      input_indexes->push_back(index);
    }
  }
}


void UnitTestTimeHeightConvolutionIo() {
  for (int32 i = 0; i < 10; i++) {
    KALDI_LOG << "iter = " << i;
    // Create a ConvolutionModel and test its I/O.
    ConvolutionModel conv_model;
    GetRandomConvolutionModel(&conv_model);
    std::ostringstream os1, os2;
    bool binary = (RandInt(0, 1) == 0);
    conv_model.Write(os1, binary);
    std::istringstream is(os1.str());
    ConvolutionModel conv_model2;
    conv_model2.Read(is, binary);
    conv_model2.Write(os2, binary);
    KALDI_ASSERT(os1.str() == os2.str() && conv_model2.Check());
  }
}

void TestComputationIo(const ConvolutionComputation &computation) {
  std::ostringstream os1, os2;
  bool binary = (RandInt(0, 1) == 0);
  computation.Write(os1, binary);
  std::istringstream is(os1.str());
  ConvolutionComputation computation2;
  computation2.Read(is, binary);
  computation2.Write(os2, binary);
  KALDI_ASSERT(os1.str() == os2.str());
  computation2.Check();
}


// This function exects indexes.size() == matrix->NumRows();
// it sets to zero any row i of the matrix for which
// indexes[i].t == kNoTime.
void ZeroBlankRows(const std::vector<Index> &indexes,
                   CuMatrix<BaseFloat> *matrix) {
  KALDI_ASSERT(static_cast<int32>(indexes.size()) == matrix->NumRows());
  int32 num_rows = matrix->NumRows();
  if (num_rows == 0) return;
  Vector<BaseFloat> mask(num_rows, kUndefined);
  mask.Set(1.0);
  const Index *indexes_ptr = &(indexes[0]);
  BaseFloat *mask_ptr = mask.Data();
  for (int32 r = 0; r < num_rows; r++) {
    if (indexes_ptr[r].t == kNoTime)
      mask_ptr[r] = 0.0;
  }
  CuVector<BaseFloat> cu_mask;
  cu_mask.Swap(&mask);
  matrix->MulRowsVec(cu_mask);
}

// This is a 'dumb' implementation of convolution, created to compare
// with ConvolveForward.
void ConvolveForwardSimple(
    const ConvolutionModel &model,
    const std::vector<Index> &input_indexes,
    const std::vector<Index> &output_indexes,
    const CuMatrixBase<BaseFloat> &input_cu,
    const CuMatrixBase<BaseFloat> &params_cu,
    CuMatrixBase<BaseFloat> *output_cu) {
  // these loops will be very slow on GPU, so do it all on CPU.
  Matrix<BaseFloat> input(input_cu), params(params_cu),
      output(*output_cu);
  std::unordered_map<Index, int32, IndexHasher> index_to_row;
  int32 input_rows = input.NumRows(),
      output_rows = output.NumRows();
  for (int32 r_in = 0; r_in < input_rows; r_in++) {
    if (input_indexes[r_in].t != kNoTime) {
      index_to_row[input_indexes[r_in]] = r_in;
    }
  }
  int32 num_offsets = model.offsets.size(),
      num_filters_in = model.num_filters_in,
      num_filters_out = model.num_filters_out,
      height_in = model.height_in,
      height_out = model.height_out,
      height_subsample_out = model.height_subsample_out;
  for (int32 r_out = 0; r_out < output_rows; r_out++) {
    Index index_out = output_indexes[r_out];
    if (index_out.t == kNoTime)
      continue;
    SubVector<BaseFloat> output_row(output, r_out);
    for (int32 o = 0; o < num_offsets; o++) {
      int32 time_offset = model.offsets[o].time_offset,
          height_offset = model.offsets[o].height_offset;
      Index index_in(index_out);
      index_in.t += time_offset;
      std::unordered_map<Index, int32, IndexHasher>::const_iterator iter =
          index_to_row.find(index_in);
      if (iter != index_to_row.end()) {
        SubMatrix<BaseFloat> params_part(params, 0, params.NumRows(),
                                         o * num_filters_in, num_filters_in);
        int32 r_in = iter->second;
        SubVector<BaseFloat> input_row(input, r_in);
        for (int32 h_out_subsampled = 0;
             h_out_subsampled < height_out;
             h_out_subsampled++) {
          int32 h_out = h_out_subsampled * height_subsample_out,
              h_in = h_out + height_offset;
          if (h_in < 0 || h_in >= height_in)
            continue;
          SubVector<BaseFloat> output_part(output_row,
                                           h_out_subsampled * num_filters_out,
                                           num_filters_out),
              input_part(input_row, h_in * num_filters_in, num_filters_in);
          output_part.AddMatVec(1.0, params_part, kNoTrans, input_part, 1.0);
        }
      }
    }
  }
  output_cu->CopyFromMat(output);
}



void TestRunningComputation(const ConvolutionModel &conv_model,
                            const std::vector<Index> &input_indexes,
                            const std::vector<Index> &output_indexes,
                            const ConvolutionComputation &computation) {
  CuMatrix<BaseFloat> input(input_indexes.size(), conv_model.InputDim(),
                            kSetZero, kStrideEqualNumCols),
      output(output_indexes.size(), conv_model.OutputDim(),
             kSetZero, kStrideEqualNumCols),
      output2(output),
      params(conv_model.ParamRows(), conv_model.ParamCols());
  input.SetRandn();
  params.SetRandn();
  ZeroBlankRows(input_indexes, &input);
  ConvolveForward(computation, input, params, &output);
  ZeroBlankRows(output_indexes, &output);

  ConvolveForwardSimple(conv_model, input_indexes, output_indexes,
                        input, params, &output2);
  KALDI_LOG << "Tested convolution for model: "
            << conv_model.Info();
  if (!output.ApproxEqual(output2, 0.001)) {
    KALDI_LOG << "Output is: " << output;
    KALDI_LOG << "Output2 is: " << output2;
    KALDI_ERR << "Convolution test failure.";
  }
}


void TestDataBackprop(const ConvolutionModel &conv_model,
                      const std::vector<Index> &input_indexes,
                      const std::vector<Index> &output_indexes,
                      const ConvolutionComputation &computation) {
  CuMatrix<BaseFloat>
      input_deriv(input_indexes.size(), conv_model.InputDim(),
                  kSetZero, kStrideEqualNumCols),
      input(input_indexes.size(), conv_model.InputDim(),
            kSetZero, kStrideEqualNumCols),
      output(output_indexes.size(), conv_model.OutputDim(),
             kSetZero, kStrideEqualNumCols),
      output_deriv(output_indexes.size(), conv_model.OutputDim(),
                   kSetZero, kStrideEqualNumCols),
      params(conv_model.ParamRows(), conv_model.ParamCols());

  input.SetRandn();
  params.SetRandn();
  output_deriv.SetRandn();

  ZeroBlankRows(output_indexes, &output_deriv);
  ConvolveBackwardData(computation, params, output_deriv, &input_deriv);
  ZeroBlankRows(input_indexes, &input_deriv);
  ZeroBlankRows(input_indexes, &input);

  // define the objf as TraceMatMat(output_deriv, output, kTrans).
  // we can work it out from the backpropagated data-derivative.
  BaseFloat expected_objf = TraceMatMat(input_deriv, input, kTrans);

  ConvolveForward(computation, input, params, &output);
  ZeroBlankRows(output_indexes, &output);

  BaseFloat observed_objf = TraceMatMat(output, output_deriv, kTrans);

  KALDI_LOG << "Expected objf = " << expected_objf
            << ", observed objf = " << observed_objf;
  if (!ApproxEqual(expected_objf, observed_objf, 0.1) &&
      fabs(expected_objf) < 1.0) {
    KALDI_ERR << "Difference in objf too large.";
  }
}


void TestParamsBackprop(const ConvolutionModel &conv_model,
                        const std::vector<Index> &input_indexes,
                        const std::vector<Index> &output_indexes,
                        const ConvolutionComputation &computation) {
  CuMatrix<BaseFloat>
      input(input_indexes.size(), conv_model.InputDim(),
            kSetZero, kStrideEqualNumCols),
      output(output_indexes.size(), conv_model.OutputDim(),
             kSetZero, kStrideEqualNumCols),
      output_deriv(output_indexes.size(), conv_model.OutputDim(),
                   kSetZero, kStrideEqualNumCols),
      params(conv_model.ParamRows(), conv_model.ParamCols()),
      params_deriv(conv_model.ParamRows(), conv_model.ParamCols());

  input.SetRandn();
  params.SetRandn();
  output_deriv.SetRandn();

  BaseFloat alpha = 0.5 * RandInt(1, 3);

  ZeroBlankRows(output_indexes, &output_deriv);
  ZeroBlankRows(input_indexes, &input);

  ConvolveBackwardParams(computation, input, output_deriv, alpha,
                         &params_deriv);

  BaseFloat expected_objf = TraceMatMat(params_deriv, params, kTrans) / alpha;

  ConvolveForward(computation, input, params, &output);

  ZeroBlankRows(output_indexes, &output);

  BaseFloat observed_objf = TraceMatMat(output, output_deriv, kTrans);

  KALDI_LOG << "Expected objf = " << expected_objf
            << ", observed objf = " << observed_objf;
  if (!ApproxEqual(expected_objf, observed_objf, 0.1) &&
      fabs(expected_objf) < 1.0) {
    KALDI_ERR << "Difference in objf too large.";
  }
}



void UnitTestTimeHeightConvolutionCompile() {
  for (int32 i = 0; i < 10; i++) {
    KALDI_LOG << "iter = " << i;
    // Create a ConvolutionModel
    ConvolutionModel conv_model;
    GetRandomConvolutionModel(&conv_model);
    std::vector<Index> input_indexes, output_indexes;
    GetRandomConvolutionIndexes(conv_model, &input_indexes, &output_indexes);

    ConvolutionComputationOptions opts;
    ConvolutionComputation computation;
    std::vector<Index> input_indexes_modified, output_indexes_modified;
    CompileConvolutionComputation(conv_model, input_indexes, output_indexes,
                                  opts, &computation,
                                  &input_indexes_modified,
                                  &output_indexes_modified);
    TestComputationIo(computation);
    TestRunningComputation(conv_model,
                           input_indexes_modified,
                           output_indexes_modified,
                           computation);
    TestDataBackprop(conv_model,
                     input_indexes_modified,
                     output_indexes_modified,
                     computation);
    TestParamsBackprop(conv_model,
                       input_indexes_modified,
                       output_indexes_modified,
                       computation);
    std::ostringstream os;
    os << "\nInput-indexes: ";
    WriteIndexVector(os, false, input_indexes);
    os << "\nInput-indexes-modified: ";
    WriteIndexVector(os, false, input_indexes_modified);
    os << "\nOutput-indexes: ";
    WriteIndexVector(os, false, output_indexes);
    os << "\nOutput-indexes-modified: ";
    WriteIndexVector(os, false, output_indexes_modified);
    KALDI_LOG << os.str();
  }
}


void UnitTestTimeHeightConvolution() {
  UnitTestTimeHeightConvolutionIo();
  UnitTestTimeHeightConvolutionCompile();
}



} // namespace time_height_convolution
} // namespace nnet3
} // namespace kaldi


int main() {
  using namespace kaldi;
  using namespace kaldi::nnet3;
  using namespace kaldi::nnet3::time_height_convolution;
  for (int32 loop = 0; loop < 2; loop++) {
#if HAVE_CUDA == 1
    CuDevice::Instantiate().SetDebugStrideMode(true);
    if (loop == 0)
      CuDevice::Instantiate().SelectGpuId("no"); // -1 means no GPU
    else
      CuDevice::Instantiate().SelectGpuId("optional"); // -2 .. automatic selection
#endif
    for (int32 i = 0; i < 5; i++) {
      UnitTestTimeHeightConvolution();
    }
  }
}