Blame view

src/nnet3/natural-gradient-online.cc 23.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
  // nnet3/natural-gradient-online.cc
  
  // Copyright 2013   Johns Hopkins University (author: Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "nnet3/natural-gradient-online.h"
  #include "nnet3/nnet-parse.h"
  
  namespace kaldi {
  namespace nnet3 {
  
  
  OnlineNaturalGradient::OnlineNaturalGradient():
      rank_(40), update_period_(1), num_samples_history_(2000.0),
      num_minibatches_history_(0.0), alpha_(4.0),
      epsilon_(1.0e-10), delta_(5.0e-04), frozen_(false), t_(0),
      self_debug_(false), rho_t_(-1.0e+10) { }
  
  
  /**
    This function creates a matrix with orthonormal rows that is like the
    following matrix, except with each row normalized to have unit 2-norm:
    [  1.1 0   1   0   1   0
       0   1.1 0   1   0   1  ]
    The reason why the first element in each row is 1.1 and not 1, is for
    symmetry-breaking... we don't want any weighted sum of all these rows to be
    all ones, because the derivative in that direction can be zero in some
    architectures and it causes us to have to do an inefficient CPU-based
    renormalization.
   */
  // static
  void OnlineNaturalGradient::InitOrthonormalSpecial(CuMatrixBase<BaseFloat> *R) {
    int32 num_rows = R->NumRows(), num_cols = R->NumCols();
    KALDI_ASSERT(num_cols >= num_rows);
    R->SetZero();
    std::vector<MatrixElement<BaseFloat> > elems;
    elems.reserve(num_cols);
    BaseFloat first_elem = 1.1;
    for (int32 r = 0; r < num_rows; r++) {
      std::vector<int32> cols;  // columns that have an entry for this row
      for (int32 c = r; c < num_cols; c += num_rows)
        cols.push_back(c);
      BaseFloat normalizer = 1.0 / sqrt(first_elem * first_elem +
                                        cols.size() - 1);
      for (size_t i = 0; i < cols.size(); i++) {
        int32 c = cols[i];
        MatrixElement<BaseFloat> e = { r, c,
                                       normalizer * (i == 0 ? first_elem :
                                                     BaseFloat(1.0)) };
        elems.push_back(e);
      }
    }
    R->AddElements(1.0, elems);
  }
  
  
  void OnlineNaturalGradient::InitDefault(int32 D) {
    if (rank_ >= D) {
      KALDI_WARN << "Rank " << rank_ << " of online preconditioner is >= dim " << D
                 << ", setting it to "
                 << (D - 1) << " (but this is probably still too high)";
      rank_ = D - 1;
    }
    if (rank_ == 0) {
      // Dimension of input data was 1, so the natural gradient preconditioner
      // would always be the unit matrix.
      // We'll handle this as a special case, for generality.
      return;
    }
    KALDI_ASSERT(num_samples_history_ > 0.0 && num_samples_history_ <= 1.0e+06);
    KALDI_ASSERT((num_minibatches_history_ == 0.0 ||
                  num_minibatches_history_ > 1.0) &&
                 num_minibatches_history_ < 1.0e+06);
    KALDI_ASSERT(alpha_ >= 0.0);
    KALDI_ASSERT(rank_ > 0);
    KALDI_ASSERT(epsilon_ > 0.0 && epsilon_ <= 1.0e-05);  // plausible values.
    KALDI_ASSERT(delta_ > 0.0 && delta_ <= 1.0e-02);  // plausible values.
  
    // to initialize, in the equation
    //   F_t =(def) R_t^T D_t R_t + \rho_t I
    // we will set the orthogonal R_t to a special orthogonal matrix with no zero
    // rows or columns (see the function), rho_t to epsilon,
    // and D_t to epsilon.  But we don't store R_t directly.  Instead, we store
    //   W_t =(def)  E_t^{0.5} R_t,
    // where E_t =(def)  1/\beta_t (D_t^{-1} + 1/\beta_t I)^{-1}
    // from (eqn:tii),
    //  e_{tii} =   1/(\beta_t/d_{tii} + 1),
    // where
    // \beta_t =(def) \rho_t + \alpha/D tr(F_t)
    //         =      epsilon + alpha/D * (epsilon * D + epsilon * rank)
    //         =     epsilon * (1 + alpha * (D + rank) / D)
    // And  d_{tii} is epsilon, so
    //  e_{tii} =   1/((1 + alpha * (D + rank) / D) + 1)  [for each i.]
    //          =   1/(2 + alpha * (D + rank) / D)).
    BaseFloat epsilon = epsilon_;  // we could make this a bit more.
    rho_t_ = epsilon;
    d_t_.Resize(rank_, kUndefined);
    d_t_.Set(epsilon);
    W_t_.Resize(rank_, D, kUndefined);
    // after the next line, W_ will store the orthogonal matrix R_t.
    InitOrthonormalSpecial(&W_t_);
    BaseFloat E_tii = 1.0 / ( 2.0 + (D + rank_) * alpha_ / D );
    // W_t =(def) E_t^{0.5} R_t.
    W_t_.Scale(sqrt(E_tii));
    t_ = 0;
  }
  
  void OnlineNaturalGradient::Init(const CuMatrixBase<BaseFloat> &X0) {
    int32 D = X0.NumCols();
    // for locking reasons it's better to use a different object.
    OnlineNaturalGradient this_copy(*this);
    this_copy.InitDefault(D);
    this_copy.t_ = 1;  // Prevent recursion to Init() again.
  
    CuMatrix<BaseFloat> X0_copy(X0.NumRows(), X0.NumCols(), kUndefined);
    // 'num_iters' is number of iterations with the same data from a pseudorandom
    // start.  this is a faster way of starting than doing eigenvalue
    // decomposition.
    //
    // Note: we only do three iterations of initialization if we have enough data
    // that it's reasonably possible to estimate the subspace of dimension
    // this_copy.rank_.  If we don't have more than that many rows in our initial
    // minibatch X0, we just do one iteration... this gives us almost exactly
    // (barring small effects due to epsilon_ > 0) the row subspace of X0 after
    // one iteration anyway.
    int32 num_init_iters;
    if (X0.NumRows() <= this_copy.rank_)
      num_init_iters = 1;
    else
      num_init_iters = 3;
  
    this_copy.frozen_ = false;   // un-freeze if it was frozen, so we can
                                 // initialize.
    for (int32 i = 0; i < num_init_iters; i++) {
      BaseFloat scale;
      X0_copy.CopyFromMat(X0);
      this_copy.PreconditionDirections(&X0_copy, &scale);
    }
    rank_ = this_copy.rank_;
    W_t_.Swap(&this_copy.W_t_);
    d_t_.Swap(&this_copy.d_t_);
    rho_t_ = this_copy.rho_t_;
  }
  
  void OnlineNaturalGradient::PreconditionDirections(
      CuMatrixBase<BaseFloat> *X_t,
      BaseFloat *scale) {
    if (X_t->NumCols() == 1) {
      // If the dimension of the space equals one then our natural gradient update
      // with rescaling becomes a no-op, but the code wouldn't naturally handle it
      // because rank would be zero.  Support this as a special case.
      if (scale)
        *scale = 1.0;
      return;
    }
  
    if (t_ == 0) // not initialized
      Init(*X_t);
  
    int32 R = W_t_.NumRows(), D = W_t_.NumCols();
    // space for W_t, J_t, K_t, L_t.
    CuMatrix<BaseFloat> WJKL_t(2 * R, D + R);
    WJKL_t.Range(0, R, 0, D).CopyFromMat(W_t_);
    BaseFloat rho_t(rho_t_);
    Vector<BaseFloat> d_t(d_t_);
  
    bool updating = Updating();
  
    BaseFloat initial_product;
    initial_product = TraceMatMat(*X_t, *X_t, kTrans);
  
    PreconditionDirectionsInternal(rho_t, initial_product,
                                   updating, d_t, &WJKL_t, X_t);
  
    if (scale) {
      if (initial_product <= 0.0) {
        *scale = 1.0;
      } else {
        BaseFloat final_product = TraceMatMat(*X_t, *X_t, kTrans);
        *scale = sqrt(initial_product / final_product);
      }
    }
    t_ += 1;
  }
  
  void OnlineNaturalGradient::ReorthogonalizeRt1(
      const VectorBase<BaseFloat> &d_t1,
      BaseFloat rho_t1,
      CuMatrixBase<BaseFloat> *W_t1,
      CuMatrixBase<BaseFloat> *temp_W,
      CuMatrixBase<BaseFloat> *temp_O) {
    // threshold is a configuration value: a desired threshold on orthogonality,
    // below which we won't reorthogonalize.
    const BaseFloat threshold = 1.0e-03;
  
    int32 R = W_t1->NumRows(), D = W_t1->NumCols();
    BaseFloat beta_t1 = rho_t1 * (1.0 + alpha_) + alpha_ * d_t1.Sum() / D;
    Vector<BaseFloat> e_t1(R, kUndefined), sqrt_e_t1(R, kUndefined),
        inv_sqrt_e_t1(R, kUndefined);
    ComputeEt(d_t1, beta_t1, &e_t1, &sqrt_e_t1, &inv_sqrt_e_t1);
  
    temp_O->SymAddMat2(1.0, *W_t1, kNoTrans, 0.0);
    // O_{t+1} =  E_{t+1}^{-0.5} W_{t+1} W_{t+1}^T E_{t+1}^{-0.5}
    Matrix<BaseFloat> O_mat(*temp_O);
    SpMatrix<BaseFloat> O(O_mat, kTakeLower);
    for (int32 i = 0; i < R; i++) {
      BaseFloat i_factor = inv_sqrt_e_t1(i);
      for (int32 j = 0; j <= i; j++) {
        BaseFloat j_factor = inv_sqrt_e_t1(j);
        O(i, j) *= i_factor * j_factor;
      }
    }
    if (O.IsUnit(threshold)) {
      if (self_debug_) {
        KALDI_WARN << "Not reorthogonalizing since already orthognoal: " << O;
      }
      return;
    }
    TpMatrix<BaseFloat> C(R);
    bool cholesky_ok = true;
    try {
      // one of the following two calls may throw an exception.
      C.Cholesky(O);
      C.Invert();  // Now it's C^{-1}.
      if (!(C.Max() < 100.0)) {
        KALDI_WARN << "Cholesky out of expected range, "
                  << "reorthogonalizing with Gram-Schmidt";
        cholesky_ok = false;
      }
    } catch (...) {
      // We do a Gram-Schmidt orthogonalization, which is a bit less efficient but
      // more robust than the method using Cholesky.
      KALDI_WARN << "Cholesky or Invert() failed while re-orthogonalizing R_t. "
                 << "Re-orthogonalizing on CPU.";
      cholesky_ok = false;
    }
    if (!cholesky_ok) {
      Matrix<BaseFloat> cpu_W_t1(*W_t1);
      cpu_W_t1.OrthogonalizeRows();
      W_t1->CopyFromMat(cpu_W_t1);
      // at this point cpu_W_t1 represents R_{t+1}- it has orthonormal
      // rows.  Do: W_{t+1} = E_{t+1}^{0.5} R_{t+1}
      CuVector<BaseFloat> sqrt_e_t1_gpu(sqrt_e_t1);
      W_t1->MulRowsVec(sqrt_e_t1_gpu);
      return;
    }
    // Next, compute (E_t^{0.5} C^{-1} E_t^{-0.5})
    // but it's really t+1, not t.
    for (int32 i = 0; i < R; i++) {
      BaseFloat i_factor = sqrt_e_t1(i);
      for (int32 j = 0; j < i; j++) {
        // skip j == i because i_factor * j_factor == 1 for j == i.
        BaseFloat j_factor = inv_sqrt_e_t1(j);
        C(i, j) *= i_factor * j_factor;
      }
    }
    O_mat.CopyFromTp(C);
    temp_O->CopyFromMat(O_mat);
    temp_W->CopyFromMat(*W_t1);
    W_t1->AddMatMat(1.0, *temp_O, kNoTrans, *temp_W, kNoTrans, 0.0);
  }
  
  // makes sure certain invariants are being preserved
  void OnlineNaturalGradient::SelfTest() const {
    KALDI_ASSERT(rho_t_ >= epsilon_);
    BaseFloat d_t_max = d_t_.Max(), d_t_min = d_t_.Min();
    KALDI_ASSERT(d_t_min >= epsilon_);
    KALDI_ASSERT(d_t_min > 0.9 * delta_ * d_t_max);
    KALDI_ASSERT(rho_t_ > 0.9 * delta_ * d_t_max);
  
    int32 D = W_t_.NumCols(), R = W_t_.NumRows();
    BaseFloat beta_t = rho_t_ * (1.0 + alpha_) + alpha_ * d_t_.Sum() / D;
    Vector<BaseFloat> e_t(R, kUndefined), sqrt_e_t(R, kUndefined),
        inv_sqrt_e_t(R, kUndefined);
    ComputeEt(d_t_, beta_t, &e_t, &sqrt_e_t, &inv_sqrt_e_t);
  
    CuSpMatrix<BaseFloat> S(R);
    S.AddMat2(1.0, W_t_, kNoTrans, 0.0);
    SpMatrix<BaseFloat> O(S);
    for (int32 i = 0; i < R; i++) {
      BaseFloat i_factor = inv_sqrt_e_t(i);
      for (int32 j = 0; j <= i; j++) {
        BaseFloat j_factor = inv_sqrt_e_t(j);
        O(i, j) *= i_factor * j_factor;
      }
    }
    if (!O.IsUnit(1.0e-04) || O(0, 0) != O(0, 0)) {
      BaseFloat worst_error = 0.0;
      int32 worst_i = 0, worst_j = 0;
      for (int32 i = 0; i < R; i++) {
        for (int32 j = 0; j < R; j++) {
          BaseFloat elem = O(i, j);
          BaseFloat error = fabs(elem - (i == j ? 1.0 : 0.0));
          if (error > worst_error || error != error) {
            worst_error = error;
            worst_i = i;
            worst_j = j;
          }
        }
      }
      if (worst_error > 1.0e-02 || worst_error != worst_error) {
        KALDI_WARN << "Failed to verify W_t (worst error: O[" << worst_i << ','
                   << worst_j << "] = " << O(worst_i, worst_j)
                   << ", d_t = " << d_t_;
      }
    }
  }
  
  void OnlineNaturalGradient::PreconditionDirectionsInternal(
      const BaseFloat rho_t,
      const BaseFloat tr_X_Xt,
      bool updating,
      const Vector<BaseFloat> &d_t,
      CuMatrixBase<BaseFloat> *WJKL_t,
      CuMatrixBase<BaseFloat> *X_t) {
    int32 N = X_t->NumRows(),  // Minibatch size.
        D = X_t->NumCols(),  // Dimensions of vectors we're preconditioning
        R = rank_;  // Rank of correction to unit matrix.
    KALDI_ASSERT(R > 0 && R < D);
    BaseFloat eta = Eta(N);
  
    CuMatrix<BaseFloat> H_t(N, R);
    const CuSubMatrix<BaseFloat> W_t(*WJKL_t, 0, R, 0, D);
    // Below, WJ_t and LK_t are combinations of two matrices,
    // which we define in order to combine two separate multiplications into one.
    CuSubMatrix<BaseFloat> J_t(*WJKL_t, R, R, 0, D),
        L_t(*WJKL_t, 0, R, D, R),
        K_t(*WJKL_t, R, R, D, R),
        WJ_t(*WJKL_t, 0, 2 * R, 0, D),
        LK_t(*WJKL_t, 0, 2 * R, D, R);
  
    H_t.AddMatMat(1.0, *X_t, kNoTrans, W_t, kTrans, 0.0);  // H_t = X_t W_t^T
  
    if (!updating) {
      // We're not updating the estimate of the Fisher matrix; we just apply the
      // preconditioning and return.
      // X_hat_t = X_t - H_t W_t
      X_t->AddMatMat(-1.0, H_t, kNoTrans, W_t, kNoTrans, 1.0);
      return;
    }
    J_t.AddMatMat(1.0, H_t, kTrans, *X_t, kNoTrans, 0.0);  // J_t = H_t^T X_t
  
    bool compute_lk_together = (N > D);
  
    if (compute_lk_together) {
      // do the following two multiplies in one operation...
      // note
      // L_t = W_t J_t^T
      // K_t = J_t J_t^T
      // Note: L_t was defined as L_t = J_t W_t^T, but it's actually symmetric,
      // so we can compute it as L_t = W_t J_t^T.
      LK_t.AddMatMat(1.0, WJ_t, kNoTrans, J_t, kTrans, 0.0);
    } else {
      K_t.SymAddMat2(1.0, J_t, kNoTrans, 0.0);
      L_t.SymAddMat2(1.0, H_t, kTrans, 0.0);
    }
  
    Matrix<BaseFloat> LK_cpu(LK_t);  // contains L and K on the CPU.
    SubMatrix<BaseFloat> L_t_cpu(LK_cpu, 0, R, 0, R),
        K_t_cpu(LK_cpu, R, R, 0, R);
    if (!compute_lk_together) {
      // the SymAddMat2 operations only set the lower triangle and diagonal.
      L_t_cpu.CopyLowerToUpper();
      K_t_cpu.CopyLowerToUpper();
    }
  
    // beta_t = \rho_t(1+\alpha) + \alpha/D tr(D_t)
    BaseFloat beta_t = rho_t * (1.0 + alpha_) + alpha_ * d_t.Sum() / D;
    Vector<BaseFloat> e_t(R), sqrt_e_t(R), inv_sqrt_e_t(R);
    ComputeEt(d_t, beta_t, &e_t, &sqrt_e_t, &inv_sqrt_e_t);
    KALDI_VLOG(5) << "e_t = " << e_t;
  
    // The double-precision Z_t here, and the scaling, is to avoid potential
    // overflow, because Z_t is proportional to the fourth power of data.
    SpMatrix<double> Z_t_double(R);
    ComputeZt(N, rho_t, d_t, inv_sqrt_e_t, K_t_cpu, L_t_cpu, &Z_t_double);
    BaseFloat z_t_scale = std::max<double>(1.0, Z_t_double.Trace());
    Z_t_double.Scale(1.0 / z_t_scale);
    SpMatrix<BaseFloat> Z_t_scaled(Z_t_double);
  
    Matrix<BaseFloat> U_t(R, R);
    Vector<BaseFloat> c_t(R);
    // do the symmetric eigenvalue decomposition Z_t = U_t C_t U_t^T.
    Z_t_scaled.Eig(&c_t, &U_t);
    SortSvd(&c_t, &U_t);
    c_t.Scale(z_t_scale);
  
    const BaseFloat condition_threshold = 1.0e+06;
    // must_reorthogonalize will be true if the last diagonal element of c_t is
    // negative, since we don't take the absolute value, but this is the right
    // thing anyway.
    bool must_reorthogonalize = (c_t(0) > condition_threshold * c_t(R - 1));
  
    BaseFloat c_t_floor = pow(rho_t * (1 - eta), 2);
    int32 nf;
    c_t.ApplyFloor(c_t_floor, &nf);
    if (nf > 0)
      must_reorthogonalize = true;
    if (nf > 0 && self_debug_) {
      KALDI_WARN << "Floored " << nf << " elements of C_t.";
    }
  
    X_t->AddMatMat(-1.0, H_t, kNoTrans, W_t, kNoTrans, 1.0);  // X_hat_t = X_t - H_t W_t
  
    Vector<BaseFloat> sqrt_c_t(c_t);
    sqrt_c_t.ApplyPow(0.5);
  
    // \rho_{t+1} = 1/(D - R) (\eta/N tr(X_t X_t^T) + (1-\eta)(D \rho_t + tr(D_t)) - tr(C_t^{0.5})).
    BaseFloat rho_t1 = 1.0 / (D - R) * (eta / N * tr_X_Xt
                                        + (1-eta)*(D * rho_t + d_t.Sum())
                                        - sqrt_c_t.Sum());
    // D_{t+1} = C_t^{0.5} - \rho_{t+1} I
    Vector<BaseFloat> d_t1(sqrt_c_t);
    d_t1.Add(-rho_t1);
    BaseFloat floor_val = std::max(epsilon_, delta_ * sqrt_c_t.Max());
    if (rho_t1 < floor_val)
      rho_t1 = floor_val;
    d_t1.ApplyFloor(floor_val);
  
    CuMatrix<BaseFloat> W_t1(R, D);  // W_{t+1}
    ComputeWt1(N, d_t, d_t1, rho_t, rho_t1, U_t, sqrt_c_t, inv_sqrt_e_t,
               W_t, &J_t, &W_t1);
  
    if (must_reorthogonalize) {
      if (self_debug_) {
        KALDI_WARN << "Reorthogonalizing.";
      }
      ReorthogonalizeRt1(d_t1,
                         rho_t1,
                         &W_t1,
                         &J_t,
                         &L_t);
    }
  
    W_t_.Swap(&W_t1);
    d_t_.CopyFromVec(d_t1);
    rho_t_ = rho_t1;
  
    if (self_debug_)
      SelfTest();
  }
  
  bool OnlineNaturalGradient::Updating() const {
    // Just hard-code it here that we do 10 initial updates before skipping any.
    // This must be > 'num_init_iters = 3' from Init().
    const int num_initial_updates = 10;
  
    return (!frozen_ &&
            (t_ <= num_initial_updates ||
             (t_ - num_initial_updates) % update_period_ == 0));
  }
  
  
  BaseFloat OnlineNaturalGradient::Eta(int32 N) const {
    if (num_minibatches_history_ > 0.0) {
      KALDI_ASSERT(num_minibatches_history_ > 1.0);
      return 1.0 / num_minibatches_history_;
    } else {
      KALDI_ASSERT(num_samples_history_ > 0.0);
      BaseFloat ans = 1.0 - exp(-N / num_samples_history_);
      // Don't let eta approach 1 too closely, as it can lead to NaN's appearing if
      // the input is all zero.
      if (ans > 0.9) ans = 0.9;
      return ans;
    }
  }
  
  void OnlineNaturalGradient::ComputeWt1(int32 N,
                                         const VectorBase<BaseFloat> &d_t,
                                         const VectorBase<BaseFloat> &d_t1,
                                         BaseFloat rho_t,
                                         BaseFloat rho_t1,
                                         const MatrixBase<BaseFloat> &U_t,
                                         const VectorBase<BaseFloat> &sqrt_c_t,
                                         const VectorBase<BaseFloat> &inv_sqrt_e_t,
                                         const CuMatrixBase<BaseFloat> &W_t,
                                         CuMatrixBase<BaseFloat> *J_t,
                                         CuMatrixBase<BaseFloat> *W_t1) const {
  
    int32 R = d_t.Dim(), D = W_t.NumCols();
    BaseFloat eta = Eta(N);
  
    // \beta_{t+1} = \rho_{t+1} (1+\alpha) + \alpha/D tr(D_{t+1})
    BaseFloat beta_t1 = rho_t1 * (1.0 + alpha_) + alpha_ * d_t1.Sum() / D;
    KALDI_ASSERT(beta_t1 > 0.0);
    Vector<BaseFloat> e_t1(R, kUndefined), sqrt_e_t1(R, kUndefined),
        inv_sqrt_e_t1(R, kUndefined);
    ComputeEt(d_t1, beta_t1, &e_t1, &sqrt_e_t1, &inv_sqrt_e_t1);
    Vector<BaseFloat> inv_sqrt_c_t(sqrt_c_t);
    inv_sqrt_c_t.InvertElements();
  
    Vector<BaseFloat> w_t_coeff(R);
    for (int32 i = 0; i < R; i++)
      w_t_coeff(i) = (1.0 - eta) / (eta/N) * (d_t(i) + rho_t);
    CuVector<BaseFloat> w_t_coeff_gpu(w_t_coeff);
    // B_t = J_t + (1-\eta)/(\eta/N) (D_t + \rho_t I) W_t
    J_t->AddDiagVecMat(1.0, w_t_coeff_gpu, W_t, kNoTrans, 1.0);
  
    // A_t = (\eta/N) E_{t+1}^{0.5} C_t^{-0.5} U_t^T E_t^{-0.5}
    Matrix<BaseFloat> A_t(U_t, kTrans);
    for (int32 i = 0; i < R; i++) {
      BaseFloat i_factor = (eta / N) * sqrt_e_t1(i) * inv_sqrt_c_t(i);
      for (int32 j = 0; j < R; j++) {
        BaseFloat j_factor = inv_sqrt_e_t(j);
        A_t(i, j) *= i_factor * j_factor;
      }
    }
    // W_{t+1} = A_t B_t
    CuMatrix<BaseFloat> A_t_gpu(A_t);
    W_t1->AddMatMat(1.0, A_t_gpu, kNoTrans, *J_t, kNoTrans, 0.0);
  }
  
  void OnlineNaturalGradient::ComputeZt(int32 N,
                                       BaseFloat rho_t,
                                       const VectorBase<BaseFloat> &d_t,
                                       const VectorBase<BaseFloat> &inv_sqrt_e_t,
                                       const MatrixBase<BaseFloat> &K_t,
                                       const MatrixBase<BaseFloat> &L_t,
                                       SpMatrix<double> *Z_t) const {
    // Use doubles because the range of quantities in Z_t can get large (fourth
    // power of data), and we want to avoid overflow.  This routine is fast.
    BaseFloat eta = Eta(N);
    Vector<BaseFloat> d_t_rho_t(d_t);
    d_t_rho_t.Add(rho_t);  // now d_t_rho_t is diag(D_t + \rho_t I).
    double etaN = eta / N, eta1 = 1.0 - eta,
        etaN_sq = etaN * etaN, eta1_sq = eta1 * eta1,
        etaN_eta1 = etaN * eta1;
    int32 R = d_t.Dim();
    for (int32 i = 0; i < R; i++) {
      double inv_sqrt_e_t_i = inv_sqrt_e_t(i), d_t_rho_t_i = d_t_rho_t(i);
      for (int32 j = 0; j <= i; j++) {
        double inv_sqrt_e_t_j = inv_sqrt_e_t(j), d_t_rho_t_j = d_t_rho_t(j),
            L_t_i_j = 0.5 * (L_t(i, j) + L_t(j, i)),
            K_t_i_j = 0.5 * (K_t(i, j) + K_t(j, i));
        // See (eqn:Zt) in header.
        (*Z_t)(i, j) = etaN_sq * inv_sqrt_e_t_i * K_t_i_j * inv_sqrt_e_t_j
            + etaN_eta1 * inv_sqrt_e_t_i * L_t_i_j * inv_sqrt_e_t_j * d_t_rho_t_j
            + etaN_eta1 * d_t_rho_t_i * inv_sqrt_e_t_i * L_t_i_j * inv_sqrt_e_t_j
            + (i == j ? eta1_sq * d_t_rho_t_i * d_t_rho_t_i : 0.0);
      }
    }
  }
  
  void OnlineNaturalGradient::ComputeEt(const VectorBase<BaseFloat> &d_t,
                                       BaseFloat beta_t,
                                       VectorBase<BaseFloat> *e_t,
                                       VectorBase<BaseFloat> *sqrt_e_t,
                                       VectorBase<BaseFloat> *inv_sqrt_e_t) const {
    // e_{tii} = 1/(\beta_t/d_{tii} + 1)
    int32 D = d_t.Dim();
    const BaseFloat *d = d_t.Data();
    BaseFloat *e = e_t->Data();
    for (int32 i = 0; i < D; i++)
      e[i] = 1.0 / (beta_t / d[i]  +  1);
    sqrt_e_t->CopyFromVec(*e_t);
    sqrt_e_t->ApplyPow(0.5);
    inv_sqrt_e_t->CopyFromVec(*sqrt_e_t);
    inv_sqrt_e_t->InvertElements();
  }
  
  
  OnlineNaturalGradient::OnlineNaturalGradient(const OnlineNaturalGradient &other):
      rank_(other.rank_), update_period_(other.update_period_),
      num_samples_history_(other.num_samples_history_),
      num_minibatches_history_(other.num_minibatches_history_),
      alpha_(other.alpha_), epsilon_(other.epsilon_), delta_(other.delta_),
      frozen_(other.frozen_), t_(other.t_),
      self_debug_(other.self_debug_), W_t_(other.W_t_),
      rho_t_(other.rho_t_), d_t_(other.d_t_) { }
  
  
  OnlineNaturalGradient& OnlineNaturalGradient::operator = (
      const OnlineNaturalGradient &other) {
    rank_ = other.rank_;
    update_period_ = other.update_period_;
    num_samples_history_ = other.num_samples_history_;
    alpha_ = other.alpha_;
    epsilon_ = other.epsilon_;
    delta_ = other.delta_;
    t_ = other.t_;
    self_debug_ = other.self_debug_;
    W_t_ = other.W_t_;
    rho_t_ = other.rho_t_;
    d_t_ = other.d_t_;
    return *this;
  }
  
  void OnlineNaturalGradient::SetRank(int32 rank) {
    KALDI_ASSERT(rank > 0);
    rank_ = rank;
  }
  void OnlineNaturalGradient::SetUpdatePeriod(int32 update_period) {
    KALDI_ASSERT(update_period > 0);
    update_period_ = update_period;
  }
  void OnlineNaturalGradient::SetNumSamplesHistory(BaseFloat num_samples_history) {
    KALDI_ASSERT(num_samples_history > 0.0 &&
                 num_samples_history < 1.0e+6);
    num_samples_history_ = num_samples_history;
  }
  void OnlineNaturalGradient::SetNumMinibatchesHistory(
      BaseFloat num_minibatches_history) {
    KALDI_ASSERT(num_minibatches_history > 1.0);
    num_minibatches_history_ = num_minibatches_history;
  }
  
  void OnlineNaturalGradient::SetAlpha(BaseFloat alpha) {
    KALDI_ASSERT(alpha >= 0.0);
    alpha_ = alpha;
  }
  
  void OnlineNaturalGradient::Swap(OnlineNaturalGradient *other) {
    std::swap(rank_, other->rank_);
    std::swap(update_period_, other->update_period_);
    std::swap(num_samples_history_, other->num_samples_history_);
    std::swap(num_minibatches_history_, other->num_minibatches_history_);
    std::swap(alpha_, other->alpha_);
    std::swap(epsilon_, other->epsilon_);
    std::swap(delta_, other->delta_);
    std::swap(frozen_, other->frozen_);
    std::swap(t_, other->t_);
    std::swap(self_debug_, other->self_debug_);
    W_t_.Swap(&(other->W_t_));
    std::swap(rho_t_, other->rho_t_);
    d_t_.Swap(&(other->d_t_));
  }
  
  }  // namespace nnet3
  }  // namespace kaldi