Blame view
src/nnet3/natural-gradient-online.cc
23.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
// nnet3/natural-gradient-online.cc // Copyright 2013 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/natural-gradient-online.h" #include "nnet3/nnet-parse.h" namespace kaldi { namespace nnet3 { OnlineNaturalGradient::OnlineNaturalGradient(): rank_(40), update_period_(1), num_samples_history_(2000.0), num_minibatches_history_(0.0), alpha_(4.0), epsilon_(1.0e-10), delta_(5.0e-04), frozen_(false), t_(0), self_debug_(false), rho_t_(-1.0e+10) { } /** This function creates a matrix with orthonormal rows that is like the following matrix, except with each row normalized to have unit 2-norm: [ 1.1 0 1 0 1 0 0 1.1 0 1 0 1 ] The reason why the first element in each row is 1.1 and not 1, is for symmetry-breaking... we don't want any weighted sum of all these rows to be all ones, because the derivative in that direction can be zero in some architectures and it causes us to have to do an inefficient CPU-based renormalization. */ // static void OnlineNaturalGradient::InitOrthonormalSpecial(CuMatrixBase<BaseFloat> *R) { int32 num_rows = R->NumRows(), num_cols = R->NumCols(); KALDI_ASSERT(num_cols >= num_rows); R->SetZero(); std::vector<MatrixElement<BaseFloat> > elems; elems.reserve(num_cols); BaseFloat first_elem = 1.1; for (int32 r = 0; r < num_rows; r++) { std::vector<int32> cols; // columns that have an entry for this row for (int32 c = r; c < num_cols; c += num_rows) cols.push_back(c); BaseFloat normalizer = 1.0 / sqrt(first_elem * first_elem + cols.size() - 1); for (size_t i = 0; i < cols.size(); i++) { int32 c = cols[i]; MatrixElement<BaseFloat> e = { r, c, normalizer * (i == 0 ? first_elem : BaseFloat(1.0)) }; elems.push_back(e); } } R->AddElements(1.0, elems); } void OnlineNaturalGradient::InitDefault(int32 D) { if (rank_ >= D) { KALDI_WARN << "Rank " << rank_ << " of online preconditioner is >= dim " << D << ", setting it to " << (D - 1) << " (but this is probably still too high)"; rank_ = D - 1; } if (rank_ == 0) { // Dimension of input data was 1, so the natural gradient preconditioner // would always be the unit matrix. // We'll handle this as a special case, for generality. return; } KALDI_ASSERT(num_samples_history_ > 0.0 && num_samples_history_ <= 1.0e+06); KALDI_ASSERT((num_minibatches_history_ == 0.0 || num_minibatches_history_ > 1.0) && num_minibatches_history_ < 1.0e+06); KALDI_ASSERT(alpha_ >= 0.0); KALDI_ASSERT(rank_ > 0); KALDI_ASSERT(epsilon_ > 0.0 && epsilon_ <= 1.0e-05); // plausible values. KALDI_ASSERT(delta_ > 0.0 && delta_ <= 1.0e-02); // plausible values. // to initialize, in the equation // F_t =(def) R_t^T D_t R_t + \rho_t I // we will set the orthogonal R_t to a special orthogonal matrix with no zero // rows or columns (see the function), rho_t to epsilon, // and D_t to epsilon. But we don't store R_t directly. Instead, we store // W_t =(def) E_t^{0.5} R_t, // where E_t =(def) 1/\beta_t (D_t^{-1} + 1/\beta_t I)^{-1} // from (eqn:tii), // e_{tii} = 1/(\beta_t/d_{tii} + 1), // where // \beta_t =(def) \rho_t + \alpha/D tr(F_t) // = epsilon + alpha/D * (epsilon * D + epsilon * rank) // = epsilon * (1 + alpha * (D + rank) / D) // And d_{tii} is epsilon, so // e_{tii} = 1/((1 + alpha * (D + rank) / D) + 1) [for each i.] // = 1/(2 + alpha * (D + rank) / D)). BaseFloat epsilon = epsilon_; // we could make this a bit more. rho_t_ = epsilon; d_t_.Resize(rank_, kUndefined); d_t_.Set(epsilon); W_t_.Resize(rank_, D, kUndefined); // after the next line, W_ will store the orthogonal matrix R_t. InitOrthonormalSpecial(&W_t_); BaseFloat E_tii = 1.0 / ( 2.0 + (D + rank_) * alpha_ / D ); // W_t =(def) E_t^{0.5} R_t. W_t_.Scale(sqrt(E_tii)); t_ = 0; } void OnlineNaturalGradient::Init(const CuMatrixBase<BaseFloat> &X0) { int32 D = X0.NumCols(); // for locking reasons it's better to use a different object. OnlineNaturalGradient this_copy(*this); this_copy.InitDefault(D); this_copy.t_ = 1; // Prevent recursion to Init() again. CuMatrix<BaseFloat> X0_copy(X0.NumRows(), X0.NumCols(), kUndefined); // 'num_iters' is number of iterations with the same data from a pseudorandom // start. this is a faster way of starting than doing eigenvalue // decomposition. // // Note: we only do three iterations of initialization if we have enough data // that it's reasonably possible to estimate the subspace of dimension // this_copy.rank_. If we don't have more than that many rows in our initial // minibatch X0, we just do one iteration... this gives us almost exactly // (barring small effects due to epsilon_ > 0) the row subspace of X0 after // one iteration anyway. int32 num_init_iters; if (X0.NumRows() <= this_copy.rank_) num_init_iters = 1; else num_init_iters = 3; this_copy.frozen_ = false; // un-freeze if it was frozen, so we can // initialize. for (int32 i = 0; i < num_init_iters; i++) { BaseFloat scale; X0_copy.CopyFromMat(X0); this_copy.PreconditionDirections(&X0_copy, &scale); } rank_ = this_copy.rank_; W_t_.Swap(&this_copy.W_t_); d_t_.Swap(&this_copy.d_t_); rho_t_ = this_copy.rho_t_; } void OnlineNaturalGradient::PreconditionDirections( CuMatrixBase<BaseFloat> *X_t, BaseFloat *scale) { if (X_t->NumCols() == 1) { // If the dimension of the space equals one then our natural gradient update // with rescaling becomes a no-op, but the code wouldn't naturally handle it // because rank would be zero. Support this as a special case. if (scale) *scale = 1.0; return; } if (t_ == 0) // not initialized Init(*X_t); int32 R = W_t_.NumRows(), D = W_t_.NumCols(); // space for W_t, J_t, K_t, L_t. CuMatrix<BaseFloat> WJKL_t(2 * R, D + R); WJKL_t.Range(0, R, 0, D).CopyFromMat(W_t_); BaseFloat rho_t(rho_t_); Vector<BaseFloat> d_t(d_t_); bool updating = Updating(); BaseFloat initial_product; initial_product = TraceMatMat(*X_t, *X_t, kTrans); PreconditionDirectionsInternal(rho_t, initial_product, updating, d_t, &WJKL_t, X_t); if (scale) { if (initial_product <= 0.0) { *scale = 1.0; } else { BaseFloat final_product = TraceMatMat(*X_t, *X_t, kTrans); *scale = sqrt(initial_product / final_product); } } t_ += 1; } void OnlineNaturalGradient::ReorthogonalizeRt1( const VectorBase<BaseFloat> &d_t1, BaseFloat rho_t1, CuMatrixBase<BaseFloat> *W_t1, CuMatrixBase<BaseFloat> *temp_W, CuMatrixBase<BaseFloat> *temp_O) { // threshold is a configuration value: a desired threshold on orthogonality, // below which we won't reorthogonalize. const BaseFloat threshold = 1.0e-03; int32 R = W_t1->NumRows(), D = W_t1->NumCols(); BaseFloat beta_t1 = rho_t1 * (1.0 + alpha_) + alpha_ * d_t1.Sum() / D; Vector<BaseFloat> e_t1(R, kUndefined), sqrt_e_t1(R, kUndefined), inv_sqrt_e_t1(R, kUndefined); ComputeEt(d_t1, beta_t1, &e_t1, &sqrt_e_t1, &inv_sqrt_e_t1); temp_O->SymAddMat2(1.0, *W_t1, kNoTrans, 0.0); // O_{t+1} = E_{t+1}^{-0.5} W_{t+1} W_{t+1}^T E_{t+1}^{-0.5} Matrix<BaseFloat> O_mat(*temp_O); SpMatrix<BaseFloat> O(O_mat, kTakeLower); for (int32 i = 0; i < R; i++) { BaseFloat i_factor = inv_sqrt_e_t1(i); for (int32 j = 0; j <= i; j++) { BaseFloat j_factor = inv_sqrt_e_t1(j); O(i, j) *= i_factor * j_factor; } } if (O.IsUnit(threshold)) { if (self_debug_) { KALDI_WARN << "Not reorthogonalizing since already orthognoal: " << O; } return; } TpMatrix<BaseFloat> C(R); bool cholesky_ok = true; try { // one of the following two calls may throw an exception. C.Cholesky(O); C.Invert(); // Now it's C^{-1}. if (!(C.Max() < 100.0)) { KALDI_WARN << "Cholesky out of expected range, " << "reorthogonalizing with Gram-Schmidt"; cholesky_ok = false; } } catch (...) { // We do a Gram-Schmidt orthogonalization, which is a bit less efficient but // more robust than the method using Cholesky. KALDI_WARN << "Cholesky or Invert() failed while re-orthogonalizing R_t. " << "Re-orthogonalizing on CPU."; cholesky_ok = false; } if (!cholesky_ok) { Matrix<BaseFloat> cpu_W_t1(*W_t1); cpu_W_t1.OrthogonalizeRows(); W_t1->CopyFromMat(cpu_W_t1); // at this point cpu_W_t1 represents R_{t+1}- it has orthonormal // rows. Do: W_{t+1} = E_{t+1}^{0.5} R_{t+1} CuVector<BaseFloat> sqrt_e_t1_gpu(sqrt_e_t1); W_t1->MulRowsVec(sqrt_e_t1_gpu); return; } // Next, compute (E_t^{0.5} C^{-1} E_t^{-0.5}) // but it's really t+1, not t. for (int32 i = 0; i < R; i++) { BaseFloat i_factor = sqrt_e_t1(i); for (int32 j = 0; j < i; j++) { // skip j == i because i_factor * j_factor == 1 for j == i. BaseFloat j_factor = inv_sqrt_e_t1(j); C(i, j) *= i_factor * j_factor; } } O_mat.CopyFromTp(C); temp_O->CopyFromMat(O_mat); temp_W->CopyFromMat(*W_t1); W_t1->AddMatMat(1.0, *temp_O, kNoTrans, *temp_W, kNoTrans, 0.0); } // makes sure certain invariants are being preserved void OnlineNaturalGradient::SelfTest() const { KALDI_ASSERT(rho_t_ >= epsilon_); BaseFloat d_t_max = d_t_.Max(), d_t_min = d_t_.Min(); KALDI_ASSERT(d_t_min >= epsilon_); KALDI_ASSERT(d_t_min > 0.9 * delta_ * d_t_max); KALDI_ASSERT(rho_t_ > 0.9 * delta_ * d_t_max); int32 D = W_t_.NumCols(), R = W_t_.NumRows(); BaseFloat beta_t = rho_t_ * (1.0 + alpha_) + alpha_ * d_t_.Sum() / D; Vector<BaseFloat> e_t(R, kUndefined), sqrt_e_t(R, kUndefined), inv_sqrt_e_t(R, kUndefined); ComputeEt(d_t_, beta_t, &e_t, &sqrt_e_t, &inv_sqrt_e_t); CuSpMatrix<BaseFloat> S(R); S.AddMat2(1.0, W_t_, kNoTrans, 0.0); SpMatrix<BaseFloat> O(S); for (int32 i = 0; i < R; i++) { BaseFloat i_factor = inv_sqrt_e_t(i); for (int32 j = 0; j <= i; j++) { BaseFloat j_factor = inv_sqrt_e_t(j); O(i, j) *= i_factor * j_factor; } } if (!O.IsUnit(1.0e-04) || O(0, 0) != O(0, 0)) { BaseFloat worst_error = 0.0; int32 worst_i = 0, worst_j = 0; for (int32 i = 0; i < R; i++) { for (int32 j = 0; j < R; j++) { BaseFloat elem = O(i, j); BaseFloat error = fabs(elem - (i == j ? 1.0 : 0.0)); if (error > worst_error || error != error) { worst_error = error; worst_i = i; worst_j = j; } } } if (worst_error > 1.0e-02 || worst_error != worst_error) { KALDI_WARN << "Failed to verify W_t (worst error: O[" << worst_i << ',' << worst_j << "] = " << O(worst_i, worst_j) << ", d_t = " << d_t_; } } } void OnlineNaturalGradient::PreconditionDirectionsInternal( const BaseFloat rho_t, const BaseFloat tr_X_Xt, bool updating, const Vector<BaseFloat> &d_t, CuMatrixBase<BaseFloat> *WJKL_t, CuMatrixBase<BaseFloat> *X_t) { int32 N = X_t->NumRows(), // Minibatch size. D = X_t->NumCols(), // Dimensions of vectors we're preconditioning R = rank_; // Rank of correction to unit matrix. KALDI_ASSERT(R > 0 && R < D); BaseFloat eta = Eta(N); CuMatrix<BaseFloat> H_t(N, R); const CuSubMatrix<BaseFloat> W_t(*WJKL_t, 0, R, 0, D); // Below, WJ_t and LK_t are combinations of two matrices, // which we define in order to combine two separate multiplications into one. CuSubMatrix<BaseFloat> J_t(*WJKL_t, R, R, 0, D), L_t(*WJKL_t, 0, R, D, R), K_t(*WJKL_t, R, R, D, R), WJ_t(*WJKL_t, 0, 2 * R, 0, D), LK_t(*WJKL_t, 0, 2 * R, D, R); H_t.AddMatMat(1.0, *X_t, kNoTrans, W_t, kTrans, 0.0); // H_t = X_t W_t^T if (!updating) { // We're not updating the estimate of the Fisher matrix; we just apply the // preconditioning and return. // X_hat_t = X_t - H_t W_t X_t->AddMatMat(-1.0, H_t, kNoTrans, W_t, kNoTrans, 1.0); return; } J_t.AddMatMat(1.0, H_t, kTrans, *X_t, kNoTrans, 0.0); // J_t = H_t^T X_t bool compute_lk_together = (N > D); if (compute_lk_together) { // do the following two multiplies in one operation... // note // L_t = W_t J_t^T // K_t = J_t J_t^T // Note: L_t was defined as L_t = J_t W_t^T, but it's actually symmetric, // so we can compute it as L_t = W_t J_t^T. LK_t.AddMatMat(1.0, WJ_t, kNoTrans, J_t, kTrans, 0.0); } else { K_t.SymAddMat2(1.0, J_t, kNoTrans, 0.0); L_t.SymAddMat2(1.0, H_t, kTrans, 0.0); } Matrix<BaseFloat> LK_cpu(LK_t); // contains L and K on the CPU. SubMatrix<BaseFloat> L_t_cpu(LK_cpu, 0, R, 0, R), K_t_cpu(LK_cpu, R, R, 0, R); if (!compute_lk_together) { // the SymAddMat2 operations only set the lower triangle and diagonal. L_t_cpu.CopyLowerToUpper(); K_t_cpu.CopyLowerToUpper(); } // beta_t = \rho_t(1+\alpha) + \alpha/D tr(D_t) BaseFloat beta_t = rho_t * (1.0 + alpha_) + alpha_ * d_t.Sum() / D; Vector<BaseFloat> e_t(R), sqrt_e_t(R), inv_sqrt_e_t(R); ComputeEt(d_t, beta_t, &e_t, &sqrt_e_t, &inv_sqrt_e_t); KALDI_VLOG(5) << "e_t = " << e_t; // The double-precision Z_t here, and the scaling, is to avoid potential // overflow, because Z_t is proportional to the fourth power of data. SpMatrix<double> Z_t_double(R); ComputeZt(N, rho_t, d_t, inv_sqrt_e_t, K_t_cpu, L_t_cpu, &Z_t_double); BaseFloat z_t_scale = std::max<double>(1.0, Z_t_double.Trace()); Z_t_double.Scale(1.0 / z_t_scale); SpMatrix<BaseFloat> Z_t_scaled(Z_t_double); Matrix<BaseFloat> U_t(R, R); Vector<BaseFloat> c_t(R); // do the symmetric eigenvalue decomposition Z_t = U_t C_t U_t^T. Z_t_scaled.Eig(&c_t, &U_t); SortSvd(&c_t, &U_t); c_t.Scale(z_t_scale); const BaseFloat condition_threshold = 1.0e+06; // must_reorthogonalize will be true if the last diagonal element of c_t is // negative, since we don't take the absolute value, but this is the right // thing anyway. bool must_reorthogonalize = (c_t(0) > condition_threshold * c_t(R - 1)); BaseFloat c_t_floor = pow(rho_t * (1 - eta), 2); int32 nf; c_t.ApplyFloor(c_t_floor, &nf); if (nf > 0) must_reorthogonalize = true; if (nf > 0 && self_debug_) { KALDI_WARN << "Floored " << nf << " elements of C_t."; } X_t->AddMatMat(-1.0, H_t, kNoTrans, W_t, kNoTrans, 1.0); // X_hat_t = X_t - H_t W_t Vector<BaseFloat> sqrt_c_t(c_t); sqrt_c_t.ApplyPow(0.5); // \rho_{t+1} = 1/(D - R) (\eta/N tr(X_t X_t^T) + (1-\eta)(D \rho_t + tr(D_t)) - tr(C_t^{0.5})). BaseFloat rho_t1 = 1.0 / (D - R) * (eta / N * tr_X_Xt + (1-eta)*(D * rho_t + d_t.Sum()) - sqrt_c_t.Sum()); // D_{t+1} = C_t^{0.5} - \rho_{t+1} I Vector<BaseFloat> d_t1(sqrt_c_t); d_t1.Add(-rho_t1); BaseFloat floor_val = std::max(epsilon_, delta_ * sqrt_c_t.Max()); if (rho_t1 < floor_val) rho_t1 = floor_val; d_t1.ApplyFloor(floor_val); CuMatrix<BaseFloat> W_t1(R, D); // W_{t+1} ComputeWt1(N, d_t, d_t1, rho_t, rho_t1, U_t, sqrt_c_t, inv_sqrt_e_t, W_t, &J_t, &W_t1); if (must_reorthogonalize) { if (self_debug_) { KALDI_WARN << "Reorthogonalizing."; } ReorthogonalizeRt1(d_t1, rho_t1, &W_t1, &J_t, &L_t); } W_t_.Swap(&W_t1); d_t_.CopyFromVec(d_t1); rho_t_ = rho_t1; if (self_debug_) SelfTest(); } bool OnlineNaturalGradient::Updating() const { // Just hard-code it here that we do 10 initial updates before skipping any. // This must be > 'num_init_iters = 3' from Init(). const int num_initial_updates = 10; return (!frozen_ && (t_ <= num_initial_updates || (t_ - num_initial_updates) % update_period_ == 0)); } BaseFloat OnlineNaturalGradient::Eta(int32 N) const { if (num_minibatches_history_ > 0.0) { KALDI_ASSERT(num_minibatches_history_ > 1.0); return 1.0 / num_minibatches_history_; } else { KALDI_ASSERT(num_samples_history_ > 0.0); BaseFloat ans = 1.0 - exp(-N / num_samples_history_); // Don't let eta approach 1 too closely, as it can lead to NaN's appearing if // the input is all zero. if (ans > 0.9) ans = 0.9; return ans; } } void OnlineNaturalGradient::ComputeWt1(int32 N, const VectorBase<BaseFloat> &d_t, const VectorBase<BaseFloat> &d_t1, BaseFloat rho_t, BaseFloat rho_t1, const MatrixBase<BaseFloat> &U_t, const VectorBase<BaseFloat> &sqrt_c_t, const VectorBase<BaseFloat> &inv_sqrt_e_t, const CuMatrixBase<BaseFloat> &W_t, CuMatrixBase<BaseFloat> *J_t, CuMatrixBase<BaseFloat> *W_t1) const { int32 R = d_t.Dim(), D = W_t.NumCols(); BaseFloat eta = Eta(N); // \beta_{t+1} = \rho_{t+1} (1+\alpha) + \alpha/D tr(D_{t+1}) BaseFloat beta_t1 = rho_t1 * (1.0 + alpha_) + alpha_ * d_t1.Sum() / D; KALDI_ASSERT(beta_t1 > 0.0); Vector<BaseFloat> e_t1(R, kUndefined), sqrt_e_t1(R, kUndefined), inv_sqrt_e_t1(R, kUndefined); ComputeEt(d_t1, beta_t1, &e_t1, &sqrt_e_t1, &inv_sqrt_e_t1); Vector<BaseFloat> inv_sqrt_c_t(sqrt_c_t); inv_sqrt_c_t.InvertElements(); Vector<BaseFloat> w_t_coeff(R); for (int32 i = 0; i < R; i++) w_t_coeff(i) = (1.0 - eta) / (eta/N) * (d_t(i) + rho_t); CuVector<BaseFloat> w_t_coeff_gpu(w_t_coeff); // B_t = J_t + (1-\eta)/(\eta/N) (D_t + \rho_t I) W_t J_t->AddDiagVecMat(1.0, w_t_coeff_gpu, W_t, kNoTrans, 1.0); // A_t = (\eta/N) E_{t+1}^{0.5} C_t^{-0.5} U_t^T E_t^{-0.5} Matrix<BaseFloat> A_t(U_t, kTrans); for (int32 i = 0; i < R; i++) { BaseFloat i_factor = (eta / N) * sqrt_e_t1(i) * inv_sqrt_c_t(i); for (int32 j = 0; j < R; j++) { BaseFloat j_factor = inv_sqrt_e_t(j); A_t(i, j) *= i_factor * j_factor; } } // W_{t+1} = A_t B_t CuMatrix<BaseFloat> A_t_gpu(A_t); W_t1->AddMatMat(1.0, A_t_gpu, kNoTrans, *J_t, kNoTrans, 0.0); } void OnlineNaturalGradient::ComputeZt(int32 N, BaseFloat rho_t, const VectorBase<BaseFloat> &d_t, const VectorBase<BaseFloat> &inv_sqrt_e_t, const MatrixBase<BaseFloat> &K_t, const MatrixBase<BaseFloat> &L_t, SpMatrix<double> *Z_t) const { // Use doubles because the range of quantities in Z_t can get large (fourth // power of data), and we want to avoid overflow. This routine is fast. BaseFloat eta = Eta(N); Vector<BaseFloat> d_t_rho_t(d_t); d_t_rho_t.Add(rho_t); // now d_t_rho_t is diag(D_t + \rho_t I). double etaN = eta / N, eta1 = 1.0 - eta, etaN_sq = etaN * etaN, eta1_sq = eta1 * eta1, etaN_eta1 = etaN * eta1; int32 R = d_t.Dim(); for (int32 i = 0; i < R; i++) { double inv_sqrt_e_t_i = inv_sqrt_e_t(i), d_t_rho_t_i = d_t_rho_t(i); for (int32 j = 0; j <= i; j++) { double inv_sqrt_e_t_j = inv_sqrt_e_t(j), d_t_rho_t_j = d_t_rho_t(j), L_t_i_j = 0.5 * (L_t(i, j) + L_t(j, i)), K_t_i_j = 0.5 * (K_t(i, j) + K_t(j, i)); // See (eqn:Zt) in header. (*Z_t)(i, j) = etaN_sq * inv_sqrt_e_t_i * K_t_i_j * inv_sqrt_e_t_j + etaN_eta1 * inv_sqrt_e_t_i * L_t_i_j * inv_sqrt_e_t_j * d_t_rho_t_j + etaN_eta1 * d_t_rho_t_i * inv_sqrt_e_t_i * L_t_i_j * inv_sqrt_e_t_j + (i == j ? eta1_sq * d_t_rho_t_i * d_t_rho_t_i : 0.0); } } } void OnlineNaturalGradient::ComputeEt(const VectorBase<BaseFloat> &d_t, BaseFloat beta_t, VectorBase<BaseFloat> *e_t, VectorBase<BaseFloat> *sqrt_e_t, VectorBase<BaseFloat> *inv_sqrt_e_t) const { // e_{tii} = 1/(\beta_t/d_{tii} + 1) int32 D = d_t.Dim(); const BaseFloat *d = d_t.Data(); BaseFloat *e = e_t->Data(); for (int32 i = 0; i < D; i++) e[i] = 1.0 / (beta_t / d[i] + 1); sqrt_e_t->CopyFromVec(*e_t); sqrt_e_t->ApplyPow(0.5); inv_sqrt_e_t->CopyFromVec(*sqrt_e_t); inv_sqrt_e_t->InvertElements(); } OnlineNaturalGradient::OnlineNaturalGradient(const OnlineNaturalGradient &other): rank_(other.rank_), update_period_(other.update_period_), num_samples_history_(other.num_samples_history_), num_minibatches_history_(other.num_minibatches_history_), alpha_(other.alpha_), epsilon_(other.epsilon_), delta_(other.delta_), frozen_(other.frozen_), t_(other.t_), self_debug_(other.self_debug_), W_t_(other.W_t_), rho_t_(other.rho_t_), d_t_(other.d_t_) { } OnlineNaturalGradient& OnlineNaturalGradient::operator = ( const OnlineNaturalGradient &other) { rank_ = other.rank_; update_period_ = other.update_period_; num_samples_history_ = other.num_samples_history_; alpha_ = other.alpha_; epsilon_ = other.epsilon_; delta_ = other.delta_; t_ = other.t_; self_debug_ = other.self_debug_; W_t_ = other.W_t_; rho_t_ = other.rho_t_; d_t_ = other.d_t_; return *this; } void OnlineNaturalGradient::SetRank(int32 rank) { KALDI_ASSERT(rank > 0); rank_ = rank; } void OnlineNaturalGradient::SetUpdatePeriod(int32 update_period) { KALDI_ASSERT(update_period > 0); update_period_ = update_period; } void OnlineNaturalGradient::SetNumSamplesHistory(BaseFloat num_samples_history) { KALDI_ASSERT(num_samples_history > 0.0 && num_samples_history < 1.0e+6); num_samples_history_ = num_samples_history; } void OnlineNaturalGradient::SetNumMinibatchesHistory( BaseFloat num_minibatches_history) { KALDI_ASSERT(num_minibatches_history > 1.0); num_minibatches_history_ = num_minibatches_history; } void OnlineNaturalGradient::SetAlpha(BaseFloat alpha) { KALDI_ASSERT(alpha >= 0.0); alpha_ = alpha; } void OnlineNaturalGradient::Swap(OnlineNaturalGradient *other) { std::swap(rank_, other->rank_); std::swap(update_period_, other->update_period_); std::swap(num_samples_history_, other->num_samples_history_); std::swap(num_minibatches_history_, other->num_minibatches_history_); std::swap(alpha_, other->alpha_); std::swap(epsilon_, other->epsilon_); std::swap(delta_, other->delta_); std::swap(frozen_, other->frozen_); std::swap(t_, other->t_); std::swap(self_debug_, other->self_debug_); W_t_.Swap(&(other->W_t_)); std::swap(rho_t_, other->rho_t_); d_t_.Swap(&(other->d_t_)); } } // namespace nnet3 } // namespace kaldi |