Blame view
src/nnet3/nnet-am-decodable-simple.cc
14.9 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
// nnet3/nnet-am-decodable-simple.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/nnet-am-decodable-simple.h" #include "nnet3/nnet-utils.h" namespace kaldi { namespace nnet3 { DecodableNnetSimple::DecodableNnetSimple( const NnetSimpleComputationOptions &opts, const Nnet &nnet, const VectorBase<BaseFloat> &priors, const MatrixBase<BaseFloat> &feats, CachingOptimizingCompiler *compiler, const VectorBase<BaseFloat> *ivector, const MatrixBase<BaseFloat> *online_ivectors, int32 online_ivector_period): opts_(opts), nnet_(nnet), output_dim_(nnet_.OutputDim("output")), log_priors_(priors), feats_(feats), ivector_(ivector), online_ivector_feats_(online_ivectors), online_ivector_period_(online_ivector_period), compiler_(*compiler), current_log_post_subsampled_offset_(0) { num_subsampled_frames_ = (feats_.NumRows() + opts_.frame_subsampling_factor - 1) / opts_.frame_subsampling_factor; KALDI_ASSERT(IsSimpleNnet(nnet)); compiler_.GetSimpleNnetContext(&nnet_left_context_, &nnet_right_context_); KALDI_ASSERT(!(ivector != NULL && online_ivectors != NULL)); KALDI_ASSERT(!(online_ivectors != NULL && online_ivector_period <= 0 && "You need to set the --online-ivector-period option!")); log_priors_.ApplyLog(); CheckAndFixConfigs(); } DecodableAmNnetSimple::DecodableAmNnetSimple( const NnetSimpleComputationOptions &opts, const TransitionModel &trans_model, const AmNnetSimple &am_nnet, const MatrixBase<BaseFloat> &feats, const VectorBase<BaseFloat> *ivector, const MatrixBase<BaseFloat> *online_ivectors, int32 online_ivector_period, CachingOptimizingCompiler *compiler): compiler_(am_nnet.GetNnet(), opts.optimize_config, opts.compiler_config), decodable_nnet_(opts, am_nnet.GetNnet(), am_nnet.Priors(), feats, compiler != NULL ? compiler : &compiler_, ivector, online_ivectors, online_ivector_period), trans_model_(trans_model) { // note: we only use compiler_ if the passed-in 'compiler' is NULL. } BaseFloat DecodableAmNnetSimple::LogLikelihood(int32 frame, int32 transition_id) { int32 pdf_id = trans_model_.TransitionIdToPdfFast(transition_id); return decodable_nnet_.GetOutput(frame, pdf_id); } int32 DecodableNnetSimple::GetIvectorDim() const { if (ivector_ != NULL) return ivector_->Dim(); else if (online_ivector_feats_ != NULL) return online_ivector_feats_->NumCols(); else return 0; } void DecodableNnetSimple::EnsureFrameIsComputed(int32 subsampled_frame) { KALDI_ASSERT(subsampled_frame >= 0 && subsampled_frame < num_subsampled_frames_); int32 feature_dim = feats_.NumCols(), ivector_dim = GetIvectorDim(), nnet_input_dim = nnet_.InputDim("input"), nnet_ivector_dim = std::max<int32>(0, nnet_.InputDim("ivector")); if (feature_dim != nnet_input_dim) KALDI_ERR << "Neural net expects 'input' features with dimension " << nnet_input_dim << " but you provided " << feature_dim; if (ivector_dim != std::max<int32>(0, nnet_.InputDim("ivector"))) KALDI_ERR << "Neural net expects 'ivector' features with dimension " << nnet_ivector_dim << " but you provided " << ivector_dim; int32 current_subsampled_frames_computed = current_log_post_.NumRows(), current_subsampled_offset = current_log_post_subsampled_offset_; KALDI_ASSERT(subsampled_frame < current_subsampled_offset || subsampled_frame >= current_subsampled_offset + current_subsampled_frames_computed); // all subsampled frames pertain to the output of the network, // they are output frames divided by opts_.frame_subsampling_factor. int32 subsampling_factor = opts_.frame_subsampling_factor, subsampled_frames_per_chunk = opts_.frames_per_chunk / subsampling_factor, start_subsampled_frame = subsampled_frame, num_subsampled_frames = std::min<int32>(num_subsampled_frames_ - start_subsampled_frame, subsampled_frames_per_chunk), last_subsampled_frame = start_subsampled_frame + num_subsampled_frames - 1; KALDI_ASSERT(num_subsampled_frames > 0); // the output-frame numbers are the subsampled-frame numbers int32 first_output_frame = start_subsampled_frame * subsampling_factor, last_output_frame = last_subsampled_frame * subsampling_factor; KALDI_ASSERT(opts_.extra_left_context >= 0 && opts_.extra_right_context >= 0); int32 extra_left_context = opts_.extra_left_context, extra_right_context = opts_.extra_right_context; if (first_output_frame == 0 && opts_.extra_left_context_initial >= 0) extra_left_context = opts_.extra_left_context_initial; if (last_subsampled_frame == num_subsampled_frames_ - 1 && opts_.extra_right_context_final >= 0) extra_right_context = opts_.extra_right_context_final; int32 left_context = nnet_left_context_ + extra_left_context, right_context = nnet_right_context_ + extra_right_context; int32 first_input_frame = first_output_frame - left_context, last_input_frame = last_output_frame + right_context, num_input_frames = last_input_frame + 1 - first_input_frame; Vector<BaseFloat> ivector; GetCurrentIvector(first_output_frame, last_output_frame - first_output_frame, &ivector); Matrix<BaseFloat> input_feats; if (first_input_frame >= 0 && last_input_frame < feats_.NumRows()) { SubMatrix<BaseFloat> input_feats(feats_.RowRange(first_input_frame, num_input_frames)); DoNnetComputation(first_input_frame, input_feats, ivector, first_output_frame, num_subsampled_frames); } else { Matrix<BaseFloat> feats_block(num_input_frames, feats_.NumCols()); int32 tot_input_feats = feats_.NumRows(); for (int32 i = 0; i < num_input_frames; i++) { SubVector<BaseFloat> dest(feats_block, i); int32 t = i + first_input_frame; if (t < 0) t = 0; if (t >= tot_input_feats) t = tot_input_feats - 1; const SubVector<BaseFloat> src(feats_, t); dest.CopyFromVec(src); } DoNnetComputation(first_input_frame, feats_block, ivector, first_output_frame, num_subsampled_frames); } } // note: in the normal case (with no frame subsampling) you can ignore the // 'subsampled_' in the variable name. void DecodableNnetSimple::GetOutputForFrame(int32 subsampled_frame, VectorBase<BaseFloat> *output) { if (subsampled_frame < current_log_post_subsampled_offset_ || subsampled_frame >= current_log_post_subsampled_offset_ + current_log_post_.NumRows()) EnsureFrameIsComputed(subsampled_frame); output->CopyFromVec(current_log_post_.Row( subsampled_frame - current_log_post_subsampled_offset_)); } void DecodableNnetSimple::GetCurrentIvector(int32 output_t_start, int32 num_output_frames, Vector<BaseFloat> *ivector) { if (ivector_ != NULL) { *ivector = *ivector_; return; } else if (online_ivector_feats_ == NULL) { return; } KALDI_ASSERT(online_ivector_period_ > 0); // frame_to_search is the frame that we want to get the most recent iVector // for. We choose a point near the middle of the current window, the concept // being that this is the fairest comparison to nnet2. Obviously we could do // better by always taking the last frame's iVector, but decoding with // 'online' ivectors is only really a mechanism to simulate online operation. int32 frame_to_search = output_t_start + num_output_frames / 2; int32 ivector_frame = frame_to_search / online_ivector_period_; KALDI_ASSERT(ivector_frame >= 0); if (ivector_frame >= online_ivector_feats_->NumRows()) { int32 margin = ivector_frame - (online_ivector_feats_->NumRows() - 1); if (margin * online_ivector_period_ > 50) { // Half a second seems like too long to be explainable as edge effects. KALDI_ERR << "Could not get iVector for frame " << frame_to_search << ", only available till frame " << online_ivector_feats_->NumRows() << " * ivector-period=" << online_ivector_period_ << " (mismatched --online-ivector-period?)"; } ivector_frame = online_ivector_feats_->NumRows() - 1; } *ivector = online_ivector_feats_->Row(ivector_frame); } void DecodableNnetSimple::DoNnetComputation( int32 input_t_start, const MatrixBase<BaseFloat> &input_feats, const VectorBase<BaseFloat> &ivector, int32 output_t_start, int32 num_subsampled_frames) { ComputationRequest request; request.need_model_derivative = false; request.store_component_stats = false; bool shift_time = true; // shift the 'input' and 'output' to a consistent // time, to take advantage of caching in the compiler. // An optimization. int32 time_offset = (shift_time ? -output_t_start : 0); // First add the regular features-- named "input". request.inputs.reserve(2); request.inputs.push_back( IoSpecification("input", time_offset + input_t_start, time_offset + input_t_start + input_feats.NumRows())); if (ivector.Dim() != 0) { std::vector<Index> indexes; indexes.push_back(Index(0, 0, 0)); request.inputs.push_back(IoSpecification("ivector", indexes)); } IoSpecification output_spec; output_spec.name = "output"; output_spec.has_deriv = false; int32 subsample = opts_.frame_subsampling_factor; output_spec.indexes.resize(num_subsampled_frames); // leave n and x values at 0 (the constructor sets these). for (int32 i = 0; i < num_subsampled_frames; i++) output_spec.indexes[i].t = time_offset + output_t_start + i * subsample; request.outputs.resize(1); request.outputs[0].Swap(&output_spec); std::shared_ptr<const NnetComputation> computation = compiler_.Compile(request); Nnet *nnet_to_update = NULL; // we're not doing any update. NnetComputer computer(opts_.compute_config, *computation, nnet_, nnet_to_update); CuMatrix<BaseFloat> input_feats_cu(input_feats); computer.AcceptInput("input", &input_feats_cu); CuMatrix<BaseFloat> ivector_feats_cu; if (ivector.Dim() > 0) { ivector_feats_cu.Resize(1, ivector.Dim()); ivector_feats_cu.Row(0).CopyFromVec(ivector); computer.AcceptInput("ivector", &ivector_feats_cu); } computer.Run(); CuMatrix<BaseFloat> cu_output; computer.GetOutputDestructive("output", &cu_output); // subtract log-prior (divide by prior) if (log_priors_.Dim() != 0) cu_output.AddVecToRows(-1.0, log_priors_); // apply the acoustic scale cu_output.Scale(opts_.acoustic_scale); current_log_post_.Resize(0, 0); // the following statement just swaps the pointers if we're not using a GPU. cu_output.Swap(¤t_log_post_); current_log_post_subsampled_offset_ = output_t_start / subsample; } void DecodableNnetSimple::CheckAndFixConfigs() { static bool warned_frames_per_chunk = false; int32 nnet_modulus = nnet_.Modulus(); if (opts_.frame_subsampling_factor < 1 || opts_.frames_per_chunk < 1) KALDI_ERR << "--frame-subsampling-factor and --frames-per-chunk must be > 0"; KALDI_ASSERT(nnet_modulus > 0); int32 n = Lcm(opts_.frame_subsampling_factor, nnet_modulus); if (opts_.frames_per_chunk % n != 0) { // round up to the nearest multiple of n. int32 frames_per_chunk = n * ((opts_.frames_per_chunk + n - 1) / n); if (!warned_frames_per_chunk) { warned_frames_per_chunk = true; if (nnet_modulus == 1) { // simpler error message. KALDI_LOG << "Increasing --frames-per-chunk from " << opts_.frames_per_chunk << " to " << frames_per_chunk << " to make it a multiple of " << "--frame-subsampling-factor=" << opts_.frame_subsampling_factor; } else { KALDI_LOG << "Increasing --frames-per-chunk from " << opts_.frames_per_chunk << " to " << frames_per_chunk << " due to " << "--frame-subsampling-factor=" << opts_.frame_subsampling_factor << " and " << "nnet shift-invariance modulus = " << nnet_modulus; } } opts_.frames_per_chunk = frames_per_chunk; } } DecodableAmNnetSimpleParallel::DecodableAmNnetSimpleParallel( const NnetSimpleComputationOptions &opts, const TransitionModel &trans_model, const AmNnetSimple &am_nnet, const MatrixBase<BaseFloat> &feats, const VectorBase<BaseFloat> *ivector, const MatrixBase<BaseFloat> *online_ivectors, int32 online_ivector_period): compiler_(am_nnet.GetNnet(), opts.optimize_config, opts.compiler_config), trans_model_(trans_model), feats_copy_(NULL), ivector_copy_(NULL), online_ivectors_copy_(NULL), decodable_nnet_(NULL) { try { feats_copy_ = new Matrix<BaseFloat>(feats); if (ivector != NULL) ivector_copy_ = new Vector<BaseFloat>(*ivector); if (online_ivectors != NULL) online_ivectors_copy_ = new Matrix<BaseFloat>(*online_ivectors); decodable_nnet_ = new DecodableNnetSimple(opts, am_nnet.GetNnet(), am_nnet.Priors(), *feats_copy_, &compiler_, ivector_copy_, online_ivectors_copy_, online_ivector_period); } catch (...) { DeletePointers(); KALDI_ERR << "Error occurred in constructor (see above)"; } } void DecodableAmNnetSimpleParallel::DeletePointers() { // delete[] does nothing for null pointers, so we have no checks. delete decodable_nnet_; decodable_nnet_ = NULL; delete feats_copy_; feats_copy_ = NULL; delete ivector_copy_; ivector_copy_ = NULL; delete online_ivectors_copy_; online_ivectors_copy_ = NULL; } BaseFloat DecodableAmNnetSimpleParallel::LogLikelihood(int32 frame, int32 transition_id) { int32 pdf_id = trans_model_.TransitionIdToPdfFast(transition_id); return decodable_nnet_->GetOutput(frame, pdf_id); } } // namespace nnet3 } // namespace kaldi |