nnet-am-decodable-simple.cc
14.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// nnet3/nnet-am-decodable-simple.cc
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet3/nnet-am-decodable-simple.h"
#include "nnet3/nnet-utils.h"
namespace kaldi {
namespace nnet3 {
DecodableNnetSimple::DecodableNnetSimple(
const NnetSimpleComputationOptions &opts,
const Nnet &nnet,
const VectorBase<BaseFloat> &priors,
const MatrixBase<BaseFloat> &feats,
CachingOptimizingCompiler *compiler,
const VectorBase<BaseFloat> *ivector,
const MatrixBase<BaseFloat> *online_ivectors,
int32 online_ivector_period):
opts_(opts),
nnet_(nnet),
output_dim_(nnet_.OutputDim("output")),
log_priors_(priors),
feats_(feats),
ivector_(ivector), online_ivector_feats_(online_ivectors),
online_ivector_period_(online_ivector_period),
compiler_(*compiler),
current_log_post_subsampled_offset_(0) {
num_subsampled_frames_ =
(feats_.NumRows() + opts_.frame_subsampling_factor - 1) /
opts_.frame_subsampling_factor;
KALDI_ASSERT(IsSimpleNnet(nnet));
compiler_.GetSimpleNnetContext(&nnet_left_context_, &nnet_right_context_);
KALDI_ASSERT(!(ivector != NULL && online_ivectors != NULL));
KALDI_ASSERT(!(online_ivectors != NULL && online_ivector_period <= 0 &&
"You need to set the --online-ivector-period option!"));
log_priors_.ApplyLog();
CheckAndFixConfigs();
}
DecodableAmNnetSimple::DecodableAmNnetSimple(
const NnetSimpleComputationOptions &opts,
const TransitionModel &trans_model,
const AmNnetSimple &am_nnet,
const MatrixBase<BaseFloat> &feats,
const VectorBase<BaseFloat> *ivector,
const MatrixBase<BaseFloat> *online_ivectors,
int32 online_ivector_period,
CachingOptimizingCompiler *compiler):
compiler_(am_nnet.GetNnet(), opts.optimize_config, opts.compiler_config),
decodable_nnet_(opts, am_nnet.GetNnet(), am_nnet.Priors(),
feats, compiler != NULL ? compiler : &compiler_,
ivector, online_ivectors,
online_ivector_period),
trans_model_(trans_model) {
// note: we only use compiler_ if the passed-in 'compiler' is NULL.
}
BaseFloat DecodableAmNnetSimple::LogLikelihood(int32 frame,
int32 transition_id) {
int32 pdf_id = trans_model_.TransitionIdToPdfFast(transition_id);
return decodable_nnet_.GetOutput(frame, pdf_id);
}
int32 DecodableNnetSimple::GetIvectorDim() const {
if (ivector_ != NULL)
return ivector_->Dim();
else if (online_ivector_feats_ != NULL)
return online_ivector_feats_->NumCols();
else
return 0;
}
void DecodableNnetSimple::EnsureFrameIsComputed(int32 subsampled_frame) {
KALDI_ASSERT(subsampled_frame >= 0 &&
subsampled_frame < num_subsampled_frames_);
int32 feature_dim = feats_.NumCols(),
ivector_dim = GetIvectorDim(),
nnet_input_dim = nnet_.InputDim("input"),
nnet_ivector_dim = std::max<int32>(0, nnet_.InputDim("ivector"));
if (feature_dim != nnet_input_dim)
KALDI_ERR << "Neural net expects 'input' features with dimension "
<< nnet_input_dim << " but you provided "
<< feature_dim;
if (ivector_dim != std::max<int32>(0, nnet_.InputDim("ivector")))
KALDI_ERR << "Neural net expects 'ivector' features with dimension "
<< nnet_ivector_dim << " but you provided " << ivector_dim;
int32 current_subsampled_frames_computed = current_log_post_.NumRows(),
current_subsampled_offset = current_log_post_subsampled_offset_;
KALDI_ASSERT(subsampled_frame < current_subsampled_offset ||
subsampled_frame >= current_subsampled_offset +
current_subsampled_frames_computed);
// all subsampled frames pertain to the output of the network,
// they are output frames divided by opts_.frame_subsampling_factor.
int32 subsampling_factor = opts_.frame_subsampling_factor,
subsampled_frames_per_chunk = opts_.frames_per_chunk / subsampling_factor,
start_subsampled_frame = subsampled_frame,
num_subsampled_frames = std::min<int32>(num_subsampled_frames_ -
start_subsampled_frame,
subsampled_frames_per_chunk),
last_subsampled_frame = start_subsampled_frame + num_subsampled_frames - 1;
KALDI_ASSERT(num_subsampled_frames > 0);
// the output-frame numbers are the subsampled-frame numbers
int32 first_output_frame = start_subsampled_frame * subsampling_factor,
last_output_frame = last_subsampled_frame * subsampling_factor;
KALDI_ASSERT(opts_.extra_left_context >= 0 && opts_.extra_right_context >= 0);
int32 extra_left_context = opts_.extra_left_context,
extra_right_context = opts_.extra_right_context;
if (first_output_frame == 0 && opts_.extra_left_context_initial >= 0)
extra_left_context = opts_.extra_left_context_initial;
if (last_subsampled_frame == num_subsampled_frames_ - 1 &&
opts_.extra_right_context_final >= 0)
extra_right_context = opts_.extra_right_context_final;
int32 left_context = nnet_left_context_ + extra_left_context,
right_context = nnet_right_context_ + extra_right_context;
int32 first_input_frame = first_output_frame - left_context,
last_input_frame = last_output_frame + right_context,
num_input_frames = last_input_frame + 1 - first_input_frame;
Vector<BaseFloat> ivector;
GetCurrentIvector(first_output_frame,
last_output_frame - first_output_frame,
&ivector);
Matrix<BaseFloat> input_feats;
if (first_input_frame >= 0 &&
last_input_frame < feats_.NumRows()) {
SubMatrix<BaseFloat> input_feats(feats_.RowRange(first_input_frame,
num_input_frames));
DoNnetComputation(first_input_frame, input_feats, ivector,
first_output_frame, num_subsampled_frames);
} else {
Matrix<BaseFloat> feats_block(num_input_frames, feats_.NumCols());
int32 tot_input_feats = feats_.NumRows();
for (int32 i = 0; i < num_input_frames; i++) {
SubVector<BaseFloat> dest(feats_block, i);
int32 t = i + first_input_frame;
if (t < 0) t = 0;
if (t >= tot_input_feats) t = tot_input_feats - 1;
const SubVector<BaseFloat> src(feats_, t);
dest.CopyFromVec(src);
}
DoNnetComputation(first_input_frame, feats_block, ivector,
first_output_frame, num_subsampled_frames);
}
}
// note: in the normal case (with no frame subsampling) you can ignore the
// 'subsampled_' in the variable name.
void DecodableNnetSimple::GetOutputForFrame(int32 subsampled_frame,
VectorBase<BaseFloat> *output) {
if (subsampled_frame < current_log_post_subsampled_offset_ ||
subsampled_frame >= current_log_post_subsampled_offset_ +
current_log_post_.NumRows())
EnsureFrameIsComputed(subsampled_frame);
output->CopyFromVec(current_log_post_.Row(
subsampled_frame - current_log_post_subsampled_offset_));
}
void DecodableNnetSimple::GetCurrentIvector(int32 output_t_start,
int32 num_output_frames,
Vector<BaseFloat> *ivector) {
if (ivector_ != NULL) {
*ivector = *ivector_;
return;
} else if (online_ivector_feats_ == NULL) {
return;
}
KALDI_ASSERT(online_ivector_period_ > 0);
// frame_to_search is the frame that we want to get the most recent iVector
// for. We choose a point near the middle of the current window, the concept
// being that this is the fairest comparison to nnet2. Obviously we could do
// better by always taking the last frame's iVector, but decoding with
// 'online' ivectors is only really a mechanism to simulate online operation.
int32 frame_to_search = output_t_start + num_output_frames / 2;
int32 ivector_frame = frame_to_search / online_ivector_period_;
KALDI_ASSERT(ivector_frame >= 0);
if (ivector_frame >= online_ivector_feats_->NumRows()) {
int32 margin = ivector_frame - (online_ivector_feats_->NumRows() - 1);
if (margin * online_ivector_period_ > 50) {
// Half a second seems like too long to be explainable as edge effects.
KALDI_ERR << "Could not get iVector for frame " << frame_to_search
<< ", only available till frame "
<< online_ivector_feats_->NumRows()
<< " * ivector-period=" << online_ivector_period_
<< " (mismatched --online-ivector-period?)";
}
ivector_frame = online_ivector_feats_->NumRows() - 1;
}
*ivector = online_ivector_feats_->Row(ivector_frame);
}
void DecodableNnetSimple::DoNnetComputation(
int32 input_t_start,
const MatrixBase<BaseFloat> &input_feats,
const VectorBase<BaseFloat> &ivector,
int32 output_t_start,
int32 num_subsampled_frames) {
ComputationRequest request;
request.need_model_derivative = false;
request.store_component_stats = false;
bool shift_time = true; // shift the 'input' and 'output' to a consistent
// time, to take advantage of caching in the compiler.
// An optimization.
int32 time_offset = (shift_time ? -output_t_start : 0);
// First add the regular features-- named "input".
request.inputs.reserve(2);
request.inputs.push_back(
IoSpecification("input", time_offset + input_t_start,
time_offset + input_t_start + input_feats.NumRows()));
if (ivector.Dim() != 0) {
std::vector<Index> indexes;
indexes.push_back(Index(0, 0, 0));
request.inputs.push_back(IoSpecification("ivector", indexes));
}
IoSpecification output_spec;
output_spec.name = "output";
output_spec.has_deriv = false;
int32 subsample = opts_.frame_subsampling_factor;
output_spec.indexes.resize(num_subsampled_frames);
// leave n and x values at 0 (the constructor sets these).
for (int32 i = 0; i < num_subsampled_frames; i++)
output_spec.indexes[i].t = time_offset + output_t_start + i * subsample;
request.outputs.resize(1);
request.outputs[0].Swap(&output_spec);
std::shared_ptr<const NnetComputation> computation = compiler_.Compile(request);
Nnet *nnet_to_update = NULL; // we're not doing any update.
NnetComputer computer(opts_.compute_config, *computation,
nnet_, nnet_to_update);
CuMatrix<BaseFloat> input_feats_cu(input_feats);
computer.AcceptInput("input", &input_feats_cu);
CuMatrix<BaseFloat> ivector_feats_cu;
if (ivector.Dim() > 0) {
ivector_feats_cu.Resize(1, ivector.Dim());
ivector_feats_cu.Row(0).CopyFromVec(ivector);
computer.AcceptInput("ivector", &ivector_feats_cu);
}
computer.Run();
CuMatrix<BaseFloat> cu_output;
computer.GetOutputDestructive("output", &cu_output);
// subtract log-prior (divide by prior)
if (log_priors_.Dim() != 0)
cu_output.AddVecToRows(-1.0, log_priors_);
// apply the acoustic scale
cu_output.Scale(opts_.acoustic_scale);
current_log_post_.Resize(0, 0);
// the following statement just swaps the pointers if we're not using a GPU.
cu_output.Swap(¤t_log_post_);
current_log_post_subsampled_offset_ = output_t_start / subsample;
}
void DecodableNnetSimple::CheckAndFixConfigs() {
static bool warned_frames_per_chunk = false;
int32 nnet_modulus = nnet_.Modulus();
if (opts_.frame_subsampling_factor < 1 ||
opts_.frames_per_chunk < 1)
KALDI_ERR << "--frame-subsampling-factor and --frames-per-chunk must be > 0";
KALDI_ASSERT(nnet_modulus > 0);
int32 n = Lcm(opts_.frame_subsampling_factor, nnet_modulus);
if (opts_.frames_per_chunk % n != 0) {
// round up to the nearest multiple of n.
int32 frames_per_chunk = n * ((opts_.frames_per_chunk + n - 1) / n);
if (!warned_frames_per_chunk) {
warned_frames_per_chunk = true;
if (nnet_modulus == 1) {
// simpler error message.
KALDI_LOG << "Increasing --frames-per-chunk from "
<< opts_.frames_per_chunk << " to "
<< frames_per_chunk << " to make it a multiple of "
<< "--frame-subsampling-factor="
<< opts_.frame_subsampling_factor;
} else {
KALDI_LOG << "Increasing --frames-per-chunk from "
<< opts_.frames_per_chunk << " to "
<< frames_per_chunk << " due to "
<< "--frame-subsampling-factor="
<< opts_.frame_subsampling_factor << " and "
<< "nnet shift-invariance modulus = " << nnet_modulus;
}
}
opts_.frames_per_chunk = frames_per_chunk;
}
}
DecodableAmNnetSimpleParallel::DecodableAmNnetSimpleParallel(
const NnetSimpleComputationOptions &opts,
const TransitionModel &trans_model,
const AmNnetSimple &am_nnet,
const MatrixBase<BaseFloat> &feats,
const VectorBase<BaseFloat> *ivector,
const MatrixBase<BaseFloat> *online_ivectors,
int32 online_ivector_period):
compiler_(am_nnet.GetNnet(), opts.optimize_config, opts.compiler_config),
trans_model_(trans_model),
feats_copy_(NULL),
ivector_copy_(NULL),
online_ivectors_copy_(NULL),
decodable_nnet_(NULL) {
try {
feats_copy_ = new Matrix<BaseFloat>(feats);
if (ivector != NULL)
ivector_copy_ = new Vector<BaseFloat>(*ivector);
if (online_ivectors != NULL)
online_ivectors_copy_ = new Matrix<BaseFloat>(*online_ivectors);
decodable_nnet_ = new DecodableNnetSimple(opts, am_nnet.GetNnet(),
am_nnet.Priors(), *feats_copy_,
&compiler_, ivector_copy_,
online_ivectors_copy_,
online_ivector_period);
} catch (...) {
DeletePointers();
KALDI_ERR << "Error occurred in constructor (see above)";
}
}
void DecodableAmNnetSimpleParallel::DeletePointers() {
// delete[] does nothing for null pointers, so we have no checks.
delete decodable_nnet_;
decodable_nnet_ = NULL;
delete feats_copy_;
feats_copy_ = NULL;
delete ivector_copy_;
ivector_copy_ = NULL;
delete online_ivectors_copy_;
online_ivectors_copy_ = NULL;
}
BaseFloat DecodableAmNnetSimpleParallel::LogLikelihood(int32 frame,
int32 transition_id) {
int32 pdf_id = trans_model_.TransitionIdToPdfFast(transition_id);
return decodable_nnet_->GetOutput(frame, pdf_id);
}
} // namespace nnet3
} // namespace kaldi