Blame view
src/nnet3/nnet-compile-looped.cc
15 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
// nnet3/nnet-compile-looped.cc // Copyright 2016 Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/nnet-compile-looped.h" #include "nnet3/nnet-optimize-utils.h" #include "nnet3/nnet-utils.h" namespace kaldi { namespace nnet3 { void ModifyNnetIvectorPeriod(int32 ivector_period, Nnet *nnet) { KALDI_ASSERT(ivector_period > 0); std::vector<std::string> config_lines; nnet->GetConfigLines(false, &config_lines); std::ostringstream config_to_read; for (size_t i = 0; i < config_lines.size(); i++) { std::string s = config_lines[i]; ConfigLine config_line; bool b = config_line.ParseLine(config_lines[i]); KALDI_ASSERT(b && "Could not parse config line."); if (config_line.FirstToken() == "component-node") { // What we're trying to do here is: find a line like: // component-node name=foo component=foo input=Append(bar, ReplaceIndex(ivector, t, 0)) // we want to replace it with something like: // component-node name=foo component=foo input=Append(bar, ReplaceIndex(ivector, t, 0)) // .. and we want this to also work if instead of 'ivector' it has something like // Scale(0.5, ivector). We assume that ReplaceIndex() expressions only occur in this // type of context. std::string whole_line = config_lines[i]; std::string to_search_for = "ReplaceIndex("; std::string::size_type to_search_for_size = to_search_for.size(); std::string::size_type pos = whole_line.find(to_search_for); if (pos != std::string::npos) { std::string::size_type comma_pos = whole_line.find(", t, 0)", pos); if (comma_pos != std::string::npos) { // if the line contained ReplaceIndex(ivector, t, 0), // descriptor_name would now be 'ivector'. std::string descriptor_name = whole_line.substr(pos + to_search_for_size, comma_pos - (pos + to_search_for_size)); // Note: 7, below, is the size of: ", t, 0)". std::string::size_type end_pos = comma_pos + 7; std::string::size_type expr_size = end_pos - pos; // e.g. expr_size would be strlen("ReplaceIndex(ivector, t, 0)"). std::ostringstream to_replace_with; to_replace_with << "Round(" << descriptor_name << ", " << ivector_period << ")"; whole_line.replace(pos, expr_size, to_replace_with.str()); config_to_read << whole_line << " "; } else { KALDI_ERR << "Could not process the ReplaceIndex expression in: " << whole_line; } } } } if (!config_to_read.str().empty()) { std::istringstream is(config_to_read.str()); nnet->ReadConfig(is); } } int32 GetChunkSize(const Nnet &nnet, int32 frame_subsampling_factor, int32 advised_chunk_size) { int32 modulus = nnet.Modulus(); KALDI_ASSERT(modulus > 0 && frame_subsampling_factor > 0 && advised_chunk_size > 0); int32 chunk_size = advised_chunk_size; while (1) { if (chunk_size % modulus == 0 && chunk_size % frame_subsampling_factor == 0) return chunk_size; chunk_size++; } } /// Mod(m, n), defined for integers m and n where n > 0, returns /// the modulus m % n, defined as the integer 0 <= i < n /// such that i and m are congruent modulo n; for instance, /// Mod(13, 10) = 3. /// This is like the % operation in C/C++, except that it always returns a /// positive value even for negative m; in 99% of cases where it makes a /// difference, this is what you want. In the C/C++ standard, the sign of a % b /// for negative a is not specified (except by relation with the division '/' /// operator), but in practice it would be <= 0 for almost all implementations. template<class I> I Mod(I m, I n) { I ans = m % n; if (ans < 0) ans += n; return ans; } static void CreateComputationRequestInternal( int32 begin_input_t, int32 end_input_t, int32 begin_output_t, int32 end_output_t, int32 num_sequences, int32 frame_subsampling_factor, const std::set<int32> &ivector_times, ComputationRequest *request) { request->inputs.reserve(2); request->inputs.clear(); request->inputs.resize(1 + (ivector_times.empty() ? 0 : 1)); request->inputs[0].name = "input"; request->inputs[0].has_deriv = false; request->outputs.clear(); request->outputs.resize(1); request->outputs[0].name = "output"; request->outputs[0].has_deriv = false; if (!ivector_times.empty()) { request->inputs[1].name = "ivector"; request->inputs[1].has_deriv = false; } // in the computation request the 'n' indexes (the sequence/utterance indexes) // have the larger stride than 't', although this is opposite to the way it's // done inside the computation. This is for user convenience where it may be // easier to deal with submatrixes per sequence. for (int32 n = 0; n < num_sequences; n++) { int32 x = 0; for (int32 t = begin_input_t; t < end_input_t; t++) { request->inputs[0].indexes.push_back(Index(n, t, x)); } for (int32 t = begin_output_t; t < end_output_t; t += frame_subsampling_factor) request->outputs[0].indexes.push_back(Index(n, t, x)); } if (!ivector_times.empty()) { request->inputs.resize(2); request->inputs[1].name = "ivector"; request->inputs[1].has_deriv = false; for (int32 n = 0; n < num_sequences; n++) { // note: std::sets store things in sorted order. for (std::set<int32>::const_iterator iter = ivector_times.begin(); iter != ivector_times.end(); ++iter) { int32 t = *iter, x = 0; request->inputs[1].indexes.push_back(Index(n, t, x)); } } } } void CreateLoopedComputationRequest(const Nnet &nnet, int32 chunk_size, int32 frame_subsampling_factor, int32 ivector_period, int32 left_context_begin, int32 right_context, int32 num_sequences, ComputationRequest *request1, ComputationRequest *request2, ComputationRequest *request3) { bool has_ivector = (nnet.InputDim("ivector") > 0); KALDI_ASSERT(chunk_size % frame_subsampling_factor == 0 && chunk_size % nnet.Modulus() == 0 && chunk_size % ivector_period == 0); KALDI_ASSERT(left_context_begin >= 0 && right_context >= 0); // note, 'end' is one past the last one. int32 chunk1_input_begin_t = - left_context_begin, chunk1_input_end_t = chunk_size + right_context, chunk2_input_begin_t = chunk1_input_end_t, chunk2_input_end_t = chunk2_input_begin_t + chunk_size, chunk3_input_begin_t = chunk2_input_end_t, chunk3_input_end_t = chunk3_input_begin_t + chunk_size; // work out the times at which i-vectors are required. std::set<int32> ivector_times1, ivector_times2, ivector_times3; if (has_ivector) { for (int32 t = chunk1_input_begin_t; t < chunk1_input_end_t; t++) { int32 ivector_t = t - Mod(t, ivector_period); ivector_times1.insert(ivector_t); } for (int32 t = chunk2_input_begin_t; t < chunk2_input_end_t; t++) { int32 ivector_t = t - Mod(t, ivector_period); if (ivector_times2.count(ivector_t) == 0 && ivector_times1.count(ivector_t) == 0) ivector_times2.insert(ivector_t); } for (int32 t = chunk3_input_begin_t; t < chunk3_input_end_t; t++) { int32 ivector_t = t - Mod(t, ivector_period); if (ivector_times3.count(ivector_t) == 0 && ivector_times2.count(ivector_t) == 0 && ivector_times1.count(ivector_t) == 0) ivector_times3.insert(ivector_t); } } CreateComputationRequestInternal( chunk1_input_begin_t, chunk1_input_end_t, 0, chunk_size, num_sequences, frame_subsampling_factor, ivector_times1, request1); CreateComputationRequestInternal( chunk2_input_begin_t, chunk2_input_end_t, chunk_size, chunk_size * 2, num_sequences, frame_subsampling_factor, ivector_times2, request2); CreateComputationRequestInternal( chunk3_input_begin_t, chunk3_input_end_t, chunk_size * 2, chunk_size * 3, num_sequences, frame_subsampling_factor, ivector_times3, request3); } void AddTimeOffsetToComputationRequest(int32 t_offset, ComputationRequest *request) { for (size_t i = 0; i < request->inputs.size(); i++) { size_t size = request->inputs[i].indexes.size(); for (size_t j = 0; j < size; j++) request->inputs[i].indexes[j].t += t_offset; } for (size_t i = 0; i < request->outputs.size(); i++) { size_t size = request->outputs[i].indexes.size(); for (size_t j = 0; j < size; j++) request->outputs[i].indexes[j].t += t_offset; } } static bool ExtrapolateComputationRequest( const ComputationRequest &request1, const ComputationRequest &request2, ComputationRequest *request3) { // accepts two computation requests 'request1' and 'request2' that // must be identical except for a time offset, and creates 'request3' // that is the extrapolation of the next term in sequence. *request3 = request2; KALDI_ASSERT(!request1.inputs.empty() && !request1.inputs[0].indexes.empty() && !request2.inputs.empty() && !request2.inputs[0].indexes.empty()); int32 t_offset = request2.inputs[0].indexes[0].t - request1.inputs[0].indexes[0].t; // the following is just to make sure that the inputs are structurally // equivalent. AddTimeOffsetToComputationRequest(-t_offset, request3); if (!(*request3 == request1)) return false; // there is somse structural difference, or // the time offset is not consistent. // the following reverses the last call to AddTimeOffsetToComputationRequest, // then adds the offset we want. AddTimeOffsetToComputationRequest(2 * t_offset, request3); return true; } /* Internal version of CompileLooped where you specify the the number of computation requests (must be >= 3). Returns true on success. It's possible for the optimization to fail if you give too small a value of 'num_requests' (this depends on the network topology), and in that case this function will return false and you should re-try with a higher value of num_requests. */ static bool CompileLoopedInternal( const Nnet &nnet, NnetOptimizeOptions optimize_opts, const ComputationRequest &request1, const ComputationRequest &request2, const ComputationRequest &request3, int32 num_requests, NnetComputation *computation) { KALDI_ASSERT(num_requests >= 3); std::vector<ComputationRequest> extra_requests(num_requests - 3); const ComputationRequest *prev_request = &request2; const ComputationRequest *cur_request = &request3; for (int32 i = 0; i < num_requests - 3; i++) { if (!ExtrapolateComputationRequest(*prev_request, *cur_request, &(extra_requests[i]))) { KALDI_LOG << "prev_request is:"; prev_request->Print(std::cerr); KALDI_LOG << "cur_request is:"; cur_request->Print(std::cerr); KALDI_ERR << "Computation requests do not have the right relationship"; } prev_request = cur_request; cur_request = &(extra_requests[i]); } std::vector<const ComputationRequest*> requests; requests.push_back(&request1); requests.push_back(&request2); requests.push_back(&request3); for (int32 i = 0; i < num_requests - 3; i++) requests.push_back(&(extra_requests[i])); Compiler compiler(requests, nnet); CompilerOptions compiler_opts; compiler.CreateComputation(compiler_opts, computation); optimize_opts.optimize_looped_computation = true; int32 dont_really_care = MaxOutputTimeInRequest(request3); Optimize(optimize_opts, nnet, dont_really_care, computation); return computation->commands.size() != 0 && computation->commands.back().command_type == kGotoLabel; } void CompileLooped(const Nnet &nnet, const NnetOptimizeOptions &optimize_opts, const ComputationRequest &request1, const ComputationRequest &request2, const ComputationRequest &request3, NnetComputation *computation) { int32 num_requests1 = 5, factor = 2, max_requests = 100, num_requests; Timer timer; for (num_requests = num_requests1; num_requests <= max_requests; num_requests *= factor) { if (CompileLoopedInternal(nnet, optimize_opts, request1, request2, request3, num_requests, computation)) { KALDI_LOG << "Spent " << timer.Elapsed() << " seconds in looped compilation."; return; } else { KALDI_VLOG(2) << "Looped compilation failed with " << num_requests << " requests, trying " << (num_requests * factor); } } KALDI_ERR << "Looped compilation failed with " << (num_requests/factor) << " requests, which " << "we expect should be enough... something " << "went wrong."; } void CreateLoopedComputationRequestSimple(const Nnet &nnet, int32 chunk_size, int32 frame_subsampling_factor, int32 ivector_period, int32 extra_left_context_begin, int32 extra_right_context, int32 num_sequences, ComputationRequest *request1, ComputationRequest *request2, ComputationRequest *request3) { int32 left_context, right_context; ComputeSimpleNnetContext(nnet, &left_context, &right_context); CreateLoopedComputationRequest(nnet, chunk_size, frame_subsampling_factor, ivector_period, extra_left_context_begin + left_context, extra_right_context + right_context, num_sequences, request1, request2, request3); } } // namespace nnet3 } // namespace kaldi |