nnet-compile-looped.cc
15 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
// nnet3/nnet-compile-looped.cc
// Copyright 2016 Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet3/nnet-compile-looped.h"
#include "nnet3/nnet-optimize-utils.h"
#include "nnet3/nnet-utils.h"
namespace kaldi {
namespace nnet3 {
void ModifyNnetIvectorPeriod(int32 ivector_period,
Nnet *nnet) {
KALDI_ASSERT(ivector_period > 0);
std::vector<std::string> config_lines;
nnet->GetConfigLines(false, &config_lines);
std::ostringstream config_to_read;
for (size_t i = 0; i < config_lines.size(); i++) {
std::string s = config_lines[i];
ConfigLine config_line;
bool b = config_line.ParseLine(config_lines[i]);
KALDI_ASSERT(b && "Could not parse config line.");
if (config_line.FirstToken() == "component-node") {
// What we're trying to do here is: find a line like:
// component-node name=foo component=foo input=Append(bar, ReplaceIndex(ivector, t, 0))
// we want to replace it with something like:
// component-node name=foo component=foo input=Append(bar, ReplaceIndex(ivector, t, 0))
// .. and we want this to also work if instead of 'ivector' it has something like
// Scale(0.5, ivector). We assume that ReplaceIndex() expressions only occur in this
// type of context.
std::string whole_line = config_lines[i];
std::string to_search_for = "ReplaceIndex(";
std::string::size_type to_search_for_size = to_search_for.size();
std::string::size_type pos = whole_line.find(to_search_for);
if (pos != std::string::npos) {
std::string::size_type comma_pos = whole_line.find(", t, 0)", pos);
if (comma_pos != std::string::npos) {
// if the line contained ReplaceIndex(ivector, t, 0),
// descriptor_name would now be 'ivector'.
std::string descriptor_name =
whole_line.substr(pos + to_search_for_size,
comma_pos - (pos + to_search_for_size));
// Note: 7, below, is the size of: ", t, 0)".
std::string::size_type end_pos = comma_pos + 7;
std::string::size_type expr_size = end_pos - pos;
// e.g. expr_size would be strlen("ReplaceIndex(ivector, t, 0)").
std::ostringstream to_replace_with;
to_replace_with << "Round(" << descriptor_name << ", " << ivector_period << ")";
whole_line.replace(pos, expr_size, to_replace_with.str());
config_to_read << whole_line << "\n";
} else {
KALDI_ERR << "Could not process the ReplaceIndex expression in: "
<< whole_line;
}
}
}
}
if (!config_to_read.str().empty()) {
std::istringstream is(config_to_read.str());
nnet->ReadConfig(is);
}
}
int32 GetChunkSize(const Nnet &nnet,
int32 frame_subsampling_factor,
int32 advised_chunk_size) {
int32 modulus = nnet.Modulus();
KALDI_ASSERT(modulus > 0 && frame_subsampling_factor > 0 &&
advised_chunk_size > 0);
int32 chunk_size = advised_chunk_size;
while (1) {
if (chunk_size % modulus == 0 &&
chunk_size % frame_subsampling_factor == 0)
return chunk_size;
chunk_size++;
}
}
/// Mod(m, n), defined for integers m and n where n > 0, returns
/// the modulus m % n, defined as the integer 0 <= i < n
/// such that i and m are congruent modulo n; for instance,
/// Mod(13, 10) = 3.
/// This is like the % operation in C/C++, except that it always returns a
/// positive value even for negative m; in 99% of cases where it makes a
/// difference, this is what you want. In the C/C++ standard, the sign of a % b
/// for negative a is not specified (except by relation with the division '/'
/// operator), but in practice it would be <= 0 for almost all implementations.
template<class I> I Mod(I m, I n) {
I ans = m % n;
if (ans < 0) ans += n;
return ans;
}
static void CreateComputationRequestInternal(
int32 begin_input_t, int32 end_input_t,
int32 begin_output_t, int32 end_output_t,
int32 num_sequences,
int32 frame_subsampling_factor,
const std::set<int32> &ivector_times,
ComputationRequest *request) {
request->inputs.reserve(2);
request->inputs.clear();
request->inputs.resize(1 + (ivector_times.empty() ? 0 : 1));
request->inputs[0].name = "input";
request->inputs[0].has_deriv = false;
request->outputs.clear();
request->outputs.resize(1);
request->outputs[0].name = "output";
request->outputs[0].has_deriv = false;
if (!ivector_times.empty()) {
request->inputs[1].name = "ivector";
request->inputs[1].has_deriv = false;
}
// in the computation request the 'n' indexes (the sequence/utterance indexes)
// have the larger stride than 't', although this is opposite to the way it's
// done inside the computation. This is for user convenience where it may be
// easier to deal with submatrixes per sequence.
for (int32 n = 0; n < num_sequences; n++) {
int32 x = 0;
for (int32 t = begin_input_t; t < end_input_t; t++) {
request->inputs[0].indexes.push_back(Index(n, t, x));
}
for (int32 t = begin_output_t;
t < end_output_t;
t += frame_subsampling_factor)
request->outputs[0].indexes.push_back(Index(n, t, x));
}
if (!ivector_times.empty()) {
request->inputs.resize(2);
request->inputs[1].name = "ivector";
request->inputs[1].has_deriv = false;
for (int32 n = 0; n < num_sequences; n++) {
// note: std::sets store things in sorted order.
for (std::set<int32>::const_iterator iter = ivector_times.begin();
iter != ivector_times.end(); ++iter) {
int32 t = *iter, x = 0;
request->inputs[1].indexes.push_back(Index(n, t, x));
}
}
}
}
void CreateLoopedComputationRequest(const Nnet &nnet,
int32 chunk_size,
int32 frame_subsampling_factor,
int32 ivector_period,
int32 left_context_begin,
int32 right_context,
int32 num_sequences,
ComputationRequest *request1,
ComputationRequest *request2,
ComputationRequest *request3) {
bool has_ivector = (nnet.InputDim("ivector") > 0);
KALDI_ASSERT(chunk_size % frame_subsampling_factor == 0 &&
chunk_size % nnet.Modulus() == 0 &&
chunk_size % ivector_period == 0);
KALDI_ASSERT(left_context_begin >= 0 && right_context >= 0);
// note, 'end' is one past the last one.
int32 chunk1_input_begin_t = - left_context_begin,
chunk1_input_end_t = chunk_size + right_context,
chunk2_input_begin_t = chunk1_input_end_t,
chunk2_input_end_t = chunk2_input_begin_t + chunk_size,
chunk3_input_begin_t = chunk2_input_end_t,
chunk3_input_end_t = chunk3_input_begin_t + chunk_size;
// work out the times at which i-vectors are required.
std::set<int32> ivector_times1, ivector_times2, ivector_times3;
if (has_ivector) {
for (int32 t = chunk1_input_begin_t; t < chunk1_input_end_t; t++) {
int32 ivector_t = t - Mod(t, ivector_period);
ivector_times1.insert(ivector_t);
}
for (int32 t = chunk2_input_begin_t; t < chunk2_input_end_t; t++) {
int32 ivector_t = t - Mod(t, ivector_period);
if (ivector_times2.count(ivector_t) == 0 &&
ivector_times1.count(ivector_t) == 0)
ivector_times2.insert(ivector_t);
}
for (int32 t = chunk3_input_begin_t; t < chunk3_input_end_t; t++) {
int32 ivector_t = t - Mod(t, ivector_period);
if (ivector_times3.count(ivector_t) == 0 &&
ivector_times2.count(ivector_t) == 0 &&
ivector_times1.count(ivector_t) == 0)
ivector_times3.insert(ivector_t);
}
}
CreateComputationRequestInternal(
chunk1_input_begin_t, chunk1_input_end_t,
0, chunk_size,
num_sequences, frame_subsampling_factor,
ivector_times1,
request1);
CreateComputationRequestInternal(
chunk2_input_begin_t, chunk2_input_end_t,
chunk_size, chunk_size * 2,
num_sequences, frame_subsampling_factor,
ivector_times2,
request2);
CreateComputationRequestInternal(
chunk3_input_begin_t, chunk3_input_end_t,
chunk_size * 2, chunk_size * 3,
num_sequences, frame_subsampling_factor,
ivector_times3,
request3);
}
void AddTimeOffsetToComputationRequest(int32 t_offset,
ComputationRequest *request) {
for (size_t i = 0; i < request->inputs.size(); i++) {
size_t size = request->inputs[i].indexes.size();
for (size_t j = 0; j < size; j++)
request->inputs[i].indexes[j].t += t_offset;
}
for (size_t i = 0; i < request->outputs.size(); i++) {
size_t size = request->outputs[i].indexes.size();
for (size_t j = 0; j < size; j++)
request->outputs[i].indexes[j].t += t_offset;
}
}
static bool ExtrapolateComputationRequest(
const ComputationRequest &request1,
const ComputationRequest &request2,
ComputationRequest *request3) {
// accepts two computation requests 'request1' and 'request2' that
// must be identical except for a time offset, and creates 'request3'
// that is the extrapolation of the next term in sequence.
*request3 = request2;
KALDI_ASSERT(!request1.inputs.empty() && !request1.inputs[0].indexes.empty() &&
!request2.inputs.empty() && !request2.inputs[0].indexes.empty());
int32 t_offset = request2.inputs[0].indexes[0].t -
request1.inputs[0].indexes[0].t;
// the following is just to make sure that the inputs are structurally
// equivalent.
AddTimeOffsetToComputationRequest(-t_offset, request3);
if (!(*request3 == request1))
return false; // there is somse structural difference, or
// the time offset is not consistent.
// the following reverses the last call to AddTimeOffsetToComputationRequest,
// then adds the offset we want.
AddTimeOffsetToComputationRequest(2 * t_offset, request3);
return true;
}
/* Internal version of CompileLooped where
you specify the the number of computation requests (must be >= 3).
Returns true on success.
It's possible for the optimization to fail if you give too small
a value of 'num_requests' (this depends on the network topology),
and in that case this function will return false and you should re-try
with a higher value of num_requests.
*/
static bool CompileLoopedInternal(
const Nnet &nnet,
NnetOptimizeOptions optimize_opts,
const ComputationRequest &request1,
const ComputationRequest &request2,
const ComputationRequest &request3,
int32 num_requests,
NnetComputation *computation) {
KALDI_ASSERT(num_requests >= 3);
std::vector<ComputationRequest> extra_requests(num_requests - 3);
const ComputationRequest *prev_request = &request2;
const ComputationRequest *cur_request = &request3;
for (int32 i = 0; i < num_requests - 3; i++) {
if (!ExtrapolateComputationRequest(*prev_request, *cur_request,
&(extra_requests[i]))) {
KALDI_LOG << "prev_request is:";
prev_request->Print(std::cerr);
KALDI_LOG << "cur_request is:";
cur_request->Print(std::cerr);
KALDI_ERR << "Computation requests do not have the right relationship";
}
prev_request = cur_request;
cur_request = &(extra_requests[i]);
}
std::vector<const ComputationRequest*> requests;
requests.push_back(&request1);
requests.push_back(&request2);
requests.push_back(&request3);
for (int32 i = 0; i < num_requests - 3; i++)
requests.push_back(&(extra_requests[i]));
Compiler compiler(requests, nnet);
CompilerOptions compiler_opts;
compiler.CreateComputation(compiler_opts, computation);
optimize_opts.optimize_looped_computation = true;
int32 dont_really_care = MaxOutputTimeInRequest(request3);
Optimize(optimize_opts, nnet,
dont_really_care, computation);
return computation->commands.size() != 0 &&
computation->commands.back().command_type == kGotoLabel;
}
void CompileLooped(const Nnet &nnet,
const NnetOptimizeOptions &optimize_opts,
const ComputationRequest &request1,
const ComputationRequest &request2,
const ComputationRequest &request3,
NnetComputation *computation) {
int32 num_requests1 = 5, factor = 2, max_requests = 100,
num_requests;
Timer timer;
for (num_requests = num_requests1; num_requests <= max_requests;
num_requests *= factor) {
if (CompileLoopedInternal(nnet, optimize_opts,
request1, request2, request3,
num_requests, computation)) {
KALDI_LOG << "Spent " << timer.Elapsed()
<< " seconds in looped compilation.";
return;
} else {
KALDI_VLOG(2) << "Looped compilation failed with "
<< num_requests << " requests, trying "
<< (num_requests * factor);
}
}
KALDI_ERR << "Looped compilation failed with "
<< (num_requests/factor) << " requests, which "
<< "we expect should be enough... something "
<< "went wrong.";
}
void CreateLoopedComputationRequestSimple(const Nnet &nnet,
int32 chunk_size,
int32 frame_subsampling_factor,
int32 ivector_period,
int32 extra_left_context_begin,
int32 extra_right_context,
int32 num_sequences,
ComputationRequest *request1,
ComputationRequest *request2,
ComputationRequest *request3) {
int32 left_context, right_context;
ComputeSimpleNnetContext(nnet, &left_context, &right_context);
CreateLoopedComputationRequest(nnet, chunk_size, frame_subsampling_factor,
ivector_period,
extra_left_context_begin + left_context,
extra_right_context + right_context,
num_sequences, request1, request2, request3);
}
} // namespace nnet3
} // namespace kaldi