Blame view
src/nnet3/nnet-discriminative-diagnostics.cc
7.92 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
// nnet3/nnet-discriminative-diagnostics.cc // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // Copyright 2014-2015 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "nnet3/nnet-discriminative-diagnostics.h" #include "nnet3/nnet-utils.h" #include "nnet3/discriminative-training.h" namespace kaldi { namespace nnet3 { NnetDiscriminativeComputeObjf::NnetDiscriminativeComputeObjf( const NnetComputeProbOptions &nnet_config, const discriminative::DiscriminativeOptions &discriminative_config, const TransitionModel &tmodel, const VectorBase<BaseFloat> &priors, const Nnet &nnet): nnet_config_(nnet_config), discriminative_config_(discriminative_config), tmodel_(tmodel), log_priors_(priors), nnet_(nnet), compiler_(nnet, nnet_config_.optimize_config), deriv_nnet_(NULL), num_minibatches_processed_(0) { log_priors_.ApplyLog(); if (nnet_config_.compute_deriv) { deriv_nnet_ = new Nnet(nnet_); ScaleNnet(0.0, deriv_nnet_); SetNnetAsGradient(deriv_nnet_); // force simple update } } const Nnet& NnetDiscriminativeComputeObjf::GetDeriv() const { if (deriv_nnet_ == NULL) KALDI_ERR << "GetDeriv() called when no derivatives were requested."; return *deriv_nnet_; } NnetDiscriminativeComputeObjf::~NnetDiscriminativeComputeObjf() { delete deriv_nnet_; // delete does nothing if pointer is NULL. } void NnetDiscriminativeComputeObjf::Reset() { num_minibatches_processed_ = 0; objf_info_.clear(); if (deriv_nnet_) { ScaleNnet(0.0, deriv_nnet_); SetNnetAsGradient(deriv_nnet_); } } void NnetDiscriminativeComputeObjf::Compute(const NnetDiscriminativeExample &eg) { bool need_model_derivative = nnet_config_.compute_deriv, store_component_stats = false; bool use_xent_regularization = (discriminative_config_.xent_regularize != 0.0), use_xent_derivative = false; ComputationRequest request; GetDiscriminativeComputationRequest(nnet_, eg, need_model_derivative, store_component_stats, use_xent_regularization, use_xent_derivative, &request); std::shared_ptr<const NnetComputation> computation = compiler_.Compile(request); NnetComputer computer(nnet_config_.compute_config, *computation, nnet_, deriv_nnet_); // give the inputs to the computer object. computer.AcceptInputs(nnet_, eg.inputs); computer.Run(); this->ProcessOutputs(eg, &computer); if (nnet_config_.compute_deriv) computer.Run(); } void NnetDiscriminativeComputeObjf::ProcessOutputs( const NnetDiscriminativeExample &eg, NnetComputer *computer) { // There will normally be just one output here, named 'output', // but the code is more general than this. std::vector<NnetDiscriminativeSupervision>::const_iterator iter = eg.outputs.begin(), end = eg.outputs.end(); for (; iter != end; ++iter) { const NnetDiscriminativeSupervision &sup = *iter; int32 node_index = nnet_.GetNodeIndex(sup.name); if (node_index < 0 || !nnet_.IsOutputNode(node_index)) KALDI_ERR << "Network has no output named " << sup.name; const CuMatrixBase<BaseFloat> &nnet_output = computer->GetOutput(sup.name); bool use_xent = (discriminative_config_.xent_regularize != 0.0); std::string xent_name = sup.name + "-xent"; // typically "output-xent". CuMatrix<BaseFloat> nnet_output_deriv, xent_deriv; if (nnet_config_.compute_deriv) nnet_output_deriv.Resize(nnet_output.NumRows(), nnet_output.NumCols(), kUndefined); if (use_xent) xent_deriv.Resize(nnet_output.NumRows(), nnet_output.NumCols(), kUndefined); if (objf_info_.count(sup.name) == 0) objf_info_.insert(std::make_pair(sup.name, discriminative::DiscriminativeObjectiveInfo(discriminative_config_))); discriminative::DiscriminativeObjectiveInfo *stats = &(objf_info_[sup.name]); discriminative::ComputeDiscriminativeObjfAndDeriv(discriminative_config_, tmodel_, log_priors_, sup.supervision, nnet_output, stats, (nnet_config_.compute_deriv ? &nnet_output_deriv : NULL), (use_xent ? &xent_deriv : NULL)); if (nnet_config_.compute_deriv) computer->AcceptInput(sup.name, &nnet_output_deriv); if (use_xent) { if (objf_info_.count(xent_name) == 0) objf_info_.insert(std::make_pair(xent_name, discriminative::DiscriminativeObjectiveInfo(discriminative_config_))); discriminative::DiscriminativeObjectiveInfo &xent_stats = objf_info_[xent_name]; // this block computes the cross-entropy objective. const CuMatrixBase<BaseFloat> &xent_output = computer->GetOutput(xent_name); // at this point, xent_deriv is posteriors derived from the numerator // computation. note, xent_deriv has a factor of 'supervision.weight', // but so does tot_weight. BaseFloat xent_objf = TraceMatMat(xent_output, xent_deriv, kTrans); xent_stats.tot_t_weighted += stats->tot_t_weighted; xent_stats.tot_objf += xent_objf; } num_minibatches_processed_++; } } bool NnetDiscriminativeComputeObjf::PrintTotalStats() const { bool ans = false; unordered_map<std::string, discriminative::DiscriminativeObjectiveInfo, StringHasher>::const_iterator iter, end; iter = objf_info_.begin(); end = objf_info_.end(); for (; iter != end; ++iter) { const std::string &name = iter->first; int32 node_index = nnet_.GetNodeIndex(name); KALDI_ASSERT(node_index >= 0); const discriminative::DiscriminativeObjectiveInfo &info = iter->second; BaseFloat tot_weight = info.tot_t_weighted; BaseFloat tot_objective = info.TotalObjf( discriminative_config_.criterion); info.PrintAll(discriminative_config_.criterion); if (info.tot_l2_term == 0.0) { KALDI_LOG << "Overall " << discriminative_config_.criterion << " objective for '" << name << "' is " << (tot_objective / tot_weight) << " per frame, " << "over " << tot_weight << " frames."; } else { KALDI_LOG << "Overall " << discriminative_config_.criterion << " objective for '" << name << "' is " << (tot_objective / tot_weight) << " + " << (info.tot_l2_term / tot_weight) << " per frame, " << "over " << tot_weight << " frames."; } if (tot_weight > 0) ans = true; } return ans; } const discriminative::DiscriminativeObjectiveInfo* NnetDiscriminativeComputeObjf::GetObjective( const std::string &output_name) const { unordered_map<std::string, discriminative::DiscriminativeObjectiveInfo, StringHasher>::const_iterator iter = objf_info_.find(output_name); if (iter != objf_info_.end()) return &(iter->second); else return NULL; } } // namespace nnet3 } // namespace kaldi |