nnet-discriminative-diagnostics.cc
7.92 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// nnet3/nnet-discriminative-diagnostics.cc
// Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey)
// Copyright 2014-2015 Vimal Manohar
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "nnet3/nnet-discriminative-diagnostics.h"
#include "nnet3/nnet-utils.h"
#include "nnet3/discriminative-training.h"
namespace kaldi {
namespace nnet3 {
NnetDiscriminativeComputeObjf::NnetDiscriminativeComputeObjf(
const NnetComputeProbOptions &nnet_config,
const discriminative::DiscriminativeOptions &discriminative_config,
const TransitionModel &tmodel,
const VectorBase<BaseFloat> &priors,
const Nnet &nnet):
nnet_config_(nnet_config),
discriminative_config_(discriminative_config),
tmodel_(tmodel),
log_priors_(priors),
nnet_(nnet),
compiler_(nnet, nnet_config_.optimize_config),
deriv_nnet_(NULL),
num_minibatches_processed_(0) {
log_priors_.ApplyLog();
if (nnet_config_.compute_deriv) {
deriv_nnet_ = new Nnet(nnet_);
ScaleNnet(0.0, deriv_nnet_);
SetNnetAsGradient(deriv_nnet_); // force simple update
}
}
const Nnet& NnetDiscriminativeComputeObjf::GetDeriv() const {
if (deriv_nnet_ == NULL)
KALDI_ERR << "GetDeriv() called when no derivatives were requested.";
return *deriv_nnet_;
}
NnetDiscriminativeComputeObjf::~NnetDiscriminativeComputeObjf() {
delete deriv_nnet_; // delete does nothing if pointer is NULL.
}
void NnetDiscriminativeComputeObjf::Reset() {
num_minibatches_processed_ = 0;
objf_info_.clear();
if (deriv_nnet_) {
ScaleNnet(0.0, deriv_nnet_);
SetNnetAsGradient(deriv_nnet_);
}
}
void NnetDiscriminativeComputeObjf::Compute(const NnetDiscriminativeExample &eg) {
bool need_model_derivative = nnet_config_.compute_deriv,
store_component_stats = false;
bool use_xent_regularization = (discriminative_config_.xent_regularize != 0.0),
use_xent_derivative = false;
ComputationRequest request;
GetDiscriminativeComputationRequest(nnet_, eg,
need_model_derivative,
store_component_stats,
use_xent_regularization, use_xent_derivative,
&request);
std::shared_ptr<const NnetComputation> computation = compiler_.Compile(request);
NnetComputer computer(nnet_config_.compute_config, *computation,
nnet_, deriv_nnet_);
// give the inputs to the computer object.
computer.AcceptInputs(nnet_, eg.inputs);
computer.Run();
this->ProcessOutputs(eg, &computer);
if (nnet_config_.compute_deriv)
computer.Run();
}
void NnetDiscriminativeComputeObjf::ProcessOutputs(
const NnetDiscriminativeExample &eg,
NnetComputer *computer) {
// There will normally be just one output here, named 'output',
// but the code is more general than this.
std::vector<NnetDiscriminativeSupervision>::const_iterator iter = eg.outputs.begin(),
end = eg.outputs.end();
for (; iter != end; ++iter) {
const NnetDiscriminativeSupervision &sup = *iter;
int32 node_index = nnet_.GetNodeIndex(sup.name);
if (node_index < 0 ||
!nnet_.IsOutputNode(node_index))
KALDI_ERR << "Network has no output named " << sup.name;
const CuMatrixBase<BaseFloat> &nnet_output = computer->GetOutput(sup.name);
bool use_xent = (discriminative_config_.xent_regularize != 0.0);
std::string xent_name = sup.name + "-xent"; // typically "output-xent".
CuMatrix<BaseFloat> nnet_output_deriv, xent_deriv;
if (nnet_config_.compute_deriv)
nnet_output_deriv.Resize(nnet_output.NumRows(), nnet_output.NumCols(),
kUndefined);
if (use_xent)
xent_deriv.Resize(nnet_output.NumRows(), nnet_output.NumCols(),
kUndefined);
if (objf_info_.count(sup.name) == 0)
objf_info_.insert(std::make_pair(sup.name,
discriminative::DiscriminativeObjectiveInfo(discriminative_config_)));
discriminative::DiscriminativeObjectiveInfo *stats = &(objf_info_[sup.name]);
discriminative::ComputeDiscriminativeObjfAndDeriv(discriminative_config_,
tmodel_, log_priors_,
sup.supervision, nnet_output,
stats,
(nnet_config_.compute_deriv ?
&nnet_output_deriv : NULL),
(use_xent ? &xent_deriv : NULL));
if (nnet_config_.compute_deriv)
computer->AcceptInput(sup.name, &nnet_output_deriv);
if (use_xent) {
if (objf_info_.count(xent_name) == 0)
objf_info_.insert(std::make_pair(xent_name,
discriminative::DiscriminativeObjectiveInfo(discriminative_config_)));
discriminative::DiscriminativeObjectiveInfo &xent_stats = objf_info_[xent_name];
// this block computes the cross-entropy objective.
const CuMatrixBase<BaseFloat> &xent_output = computer->GetOutput(xent_name);
// at this point, xent_deriv is posteriors derived from the numerator
// computation. note, xent_deriv has a factor of 'supervision.weight',
// but so does tot_weight.
BaseFloat xent_objf = TraceMatMat(xent_output, xent_deriv, kTrans);
xent_stats.tot_t_weighted += stats->tot_t_weighted;
xent_stats.tot_objf += xent_objf;
}
num_minibatches_processed_++;
}
}
bool NnetDiscriminativeComputeObjf::PrintTotalStats() const {
bool ans = false;
unordered_map<std::string, discriminative::DiscriminativeObjectiveInfo, StringHasher>::const_iterator
iter, end;
iter = objf_info_.begin();
end = objf_info_.end();
for (; iter != end; ++iter) {
const std::string &name = iter->first;
int32 node_index = nnet_.GetNodeIndex(name);
KALDI_ASSERT(node_index >= 0);
const discriminative::DiscriminativeObjectiveInfo &info = iter->second;
BaseFloat tot_weight = info.tot_t_weighted;
BaseFloat tot_objective = info.TotalObjf(
discriminative_config_.criterion);
info.PrintAll(discriminative_config_.criterion);
if (info.tot_l2_term == 0.0) {
KALDI_LOG << "Overall " << discriminative_config_.criterion
<< " objective for '"
<< name << "' is "
<< (tot_objective / tot_weight)
<< " per frame, "
<< "over " << tot_weight << " frames.";
} else {
KALDI_LOG << "Overall " << discriminative_config_.criterion
<< " objective for '"
<< name << "' is "
<< (tot_objective / tot_weight)
<< " + " << (info.tot_l2_term / tot_weight)
<< " per frame, "
<< "over " << tot_weight << " frames.";
}
if (tot_weight > 0)
ans = true;
}
return ans;
}
const discriminative::DiscriminativeObjectiveInfo* NnetDiscriminativeComputeObjf::GetObjective(
const std::string &output_name) const {
unordered_map<std::string, discriminative::DiscriminativeObjectiveInfo, StringHasher>::const_iterator
iter = objf_info_.find(output_name);
if (iter != objf_info_.end())
return &(iter->second);
else
return NULL;
}
} // namespace nnet3
} // namespace kaldi