Blame view
src/nnet3/nnet-discriminative-example.h
11.6 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
// nnet3/nnet-discriminative-example.h // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // 2014-2015 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_NNET3_NNET_DISCRIMINATIVE_EXAMPLE_H_ #define KALDI_NNET3_NNET_DISCRIMINATIVE_EXAMPLE_H_ #include "nnet3/nnet-nnet.h" #include "nnet3/nnet-computation.h" #include "util/table-types.h" #include "nnet3/discriminative-supervision.h" #include "nnet3/nnet-example.h" #include "nnet3/nnet-example-utils.h" #include "hmm/posterior.h" #include "hmm/transition-model.h" namespace kaldi { namespace nnet3 { // Glossary: mmi = Maximum Mutual Information, // mpfe = Minimum Phone Frame Error // smbr = State-level Minimum Bayes Risk // This file relates to the creation of examples for discriminative training struct NnetDiscriminativeSupervision { // the name of the output in the neural net; in simple setups it // will just be "output". std::string name; // The indexes that the output corresponds to. The size of this vector will // be equal to supervision.num_sequences * supervision.frames_per_sequence. // Be careful about the order of these indexes-- it is a little confusing. // The indexes in the 'index' vector are ordered as: (frame 0 of each sequence); // (frame 1 of each sequence); and so on. But in the 'supervision' object, // the lattice contains (sequence 0; sequence 1; ...). So reordering is needed. // This is done to make the code similar that for the 'chain' model. std::vector<Index> indexes; // The supervision object, containing the numerator and denominator // lattices. discriminative::DiscriminativeSupervision supervision; // This is a vector of per-frame weights, required to be between 0 and 1, // that is applied to the derivative during training (but not during model // combination, where the derivatives need to agree with the computed objf // values for the optimization code to work). The reason for this is to more // exactly handle edge effects and to ensure that no frames are // 'double-counted'. The order of this vector corresponds to the order of // the 'indexes' (i.e. all the first frames, then all the second frames, // etc.) // If this vector is empty it means we're not applying per-frame weights, // so it's equivalent to a vector of all ones. This vector is written // to disk compactly as unsigned char. Vector<BaseFloat> deriv_weights; // Use default assignment operator NnetDiscriminativeSupervision() { } // Initialize the object from an object of type discriminative::Supervision, // and some extra information. // Note: you probably want to set 'name' to "output". // 'first_frame' will often be zero but you can choose (just make it // consistent with how you numbered your inputs), and 'frame_skip' would be 1 // in a vanilla setup, but 3 in the case of 'chain' models NnetDiscriminativeSupervision(const std::string &name, const discriminative::DiscriminativeSupervision &supervision, const VectorBase<BaseFloat> &deriv_weights, int32 first_frame, int32 frame_skip); NnetDiscriminativeSupervision(const NnetDiscriminativeSupervision &other); void Write(std::ostream &os, bool binary) const; void Read(std::istream &is, bool binary); void Swap(NnetDiscriminativeSupervision *other); void CheckDim() const; bool operator == (const NnetDiscriminativeSupervision &other) const; }; /// NnetDiscriminativeExample is like NnetExample, but specialized for /// sequence training. struct NnetDiscriminativeExample { /// 'inputs' contains the input to the network-- normally just it has just one /// element called "input", but there may be others (e.g. one called /// "ivector")... this depends on the setup. std::vector<NnetIo> inputs; /// 'outputs' contains the sequence output supervision. There will normally /// be just one member with name == "output". std::vector<NnetDiscriminativeSupervision> outputs; void Write(std::ostream &os, bool binary) const; void Read(std::istream &is, bool binary); void Swap(NnetDiscriminativeExample *other); // Compresses the input features (if not compressed) void Compress(); NnetDiscriminativeExample() { } NnetDiscriminativeExample(const NnetDiscriminativeExample &other); bool operator == (const NnetDiscriminativeExample &other) const { return inputs == other.inputs && outputs == other.outputs; } }; /// This hashing object hashes just the structural aspects of the NnetExample /// without looking at the value of the features. It will be used in combining /// egs into batches of all similar structure. struct NnetDiscriminativeExampleStructureHasher { size_t operator () (const NnetDiscriminativeExample &eg) const noexcept ; // We also provide a version of this that works from pointers. size_t operator () (const NnetDiscriminativeExample *eg) const noexcept { return (*this)(*eg); } }; /// This comparator object compares just the structural aspects of the /// NnetDiscriminativeExample without looking at the value of the features. struct NnetDiscriminativeExampleStructureCompare { bool operator () (const NnetDiscriminativeExample &a, const NnetDiscriminativeExample &b) const; // We also provide a version of this that works from pointers. bool operator () (const NnetDiscriminativeExample *a, const NnetDiscriminativeExample *b) const { return (*this)(*a, *b); } }; /** Appends the given vector of examples (which must be non-empty) into a single output example. Intended to be used when forming minibatches for neural net training. If 'compress' it compresses the output features (recommended to save disk space). Note: the input is left as it was at the start, but it is temporarily changed inside the function; this is a trick to allow us to use the MergeExamples() routine while avoiding having to rewrite code. */ void MergeDiscriminativeExamples( std::vector<NnetDiscriminativeExample> *input, bool compress, NnetDiscriminativeExample *output); // called from MergeDiscriminativeExamples, this function merges the Supervision // objects into one. Requires (and checks) that they all have the same name. void MergeSupervision( const std::vector<const NnetDiscriminativeSupervision*> &inputs, NnetDiscriminativeSupervision *output); /** Shifts the time-index t of everything in the input of "eg" by adding "t_offset" to all "t" values-- but excluding those with names listed in "exclude_names", e.g. "ivector". This might be useful if you are doing subsampling of frames at the output, because shifted examples won't be quite equivalent to their non-shifted counterparts. "exclude_names" is a vector of names of nnet inputs that we avoid shifting the "t" values of-- normally it will contain just the single string "ivector" because we always leave t=0 for any ivector. Note: input features will be shifted by 'frame_shift', and indexes in the supervision in (eg->output) will be shifted by 'frame_shift' rounded to the closest multiple of the frame subsampling factor (e.g. 3). The frame subsampling factor is worked out from the time spacing between the indexes in the output. */ void ShiftDiscriminativeExampleTimes(int32 frame_shift, const std::vector<std::string> &exclude_names, NnetDiscriminativeExample *eg); /** This function takes a NnetDiscriminativeExample and produces a ComputationRequest. Assumes you don't want the derivatives w.r.t. the inputs; if you do, you can create the ComputationRequest manually. Assumes that if need_model_derivative is true, you will be supplying derivatives w.r.t. all outputs. */ void GetDiscriminativeComputationRequest(const Nnet &nnet, const NnetDiscriminativeExample &eg, bool need_model_derivative, bool store_component_stats, bool use_xent_regularization, bool use_xent_derivative, ComputationRequest *computation_request); typedef TableWriter<KaldiObjectHolder<NnetDiscriminativeExample > > NnetDiscriminativeExampleWriter; typedef SequentialTableReader<KaldiObjectHolder<NnetDiscriminativeExample > > SequentialNnetDiscriminativeExampleReader; typedef RandomAccessTableReader<KaldiObjectHolder<NnetDiscriminativeExample > > RandomAccessNnetDiscriminativeExampleReader; /// This function returns the 'size' of a discriminative example as defined for /// purposes of merging egs, which is defined as the largest number of Indexes /// in any of the inputs or outputs of the example. int32 GetDiscriminativeNnetExampleSize(const NnetDiscriminativeExample &a); /// This class is responsible for arranging examples in groups that have the /// same strucure (i.e. the same input and output indexes), and outputting them /// in suitable minibatches as defined by ExampleMergingConfig. class DiscriminativeExampleMerger { public: DiscriminativeExampleMerger(const ExampleMergingConfig &config, NnetDiscriminativeExampleWriter *writer); // This function accepts an example, and if possible, writes a merged example // out. The ownership of the pointer 'a' is transferred to this class when // you call this function. void AcceptExample(NnetDiscriminativeExample *a); // This function announces to the class that the input has finished, so it // should flush out any smaller-sized minibatches, as dictated by the config. // This will be called in the destructor, but you can call it explicitly when // all the input is done if you want to; it won't repeat anything if called // twice. It also prints the stats. void Finish(); // returns a suitable exit status for a program. int32 ExitStatus() { Finish(); return (num_egs_written_ > 0 ? 0 : 1); } ~DiscriminativeExampleMerger() { Finish(); }; private: // called by Finish() and AcceptExample(). Merges, updates the stats, and // writes. The 'egs' is non-const only because the egs are temporarily // changed inside MergeDiscriminativeEgs. The pointer 'egs' is still owned // by the caller. void WriteMinibatch(std::vector<NnetDiscriminativeExample> *egs); bool finished_; int32 num_egs_written_; const ExampleMergingConfig &config_; NnetDiscriminativeExampleWriter *writer_; ExampleMergingStats stats_; // Note: the "key" into the egs is the first element of the vector. typedef unordered_map<NnetDiscriminativeExample*, std::vector<NnetDiscriminativeExample*>, NnetDiscriminativeExampleStructureHasher, NnetDiscriminativeExampleStructureCompare> MapType; MapType eg_to_egs_; }; } // namespace nnet3 } // namespace kaldi #endif // KALDI_NNET3_NNET_DISCRIMINATIVE_EXAMPLE_H_ |