Blame view

src/nnet3/nnet-optimize.cc 36.3 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
  // nnet3/nnet-optimize.cc
  
  // Copyright      2015  Johns Hopkins University (author: Daniel Povey)
  //                2015  Xiaohui Zhang
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include <iomanip>
  #include "nnet3/nnet-optimize.h"
  #include "nnet3/nnet-optimize-utils.h"
  #include "nnet3/nnet-utils.h"
  #include "base/timer.h"
  
  namespace kaldi {
  namespace nnet3 {
  
  void NnetOptimizeOptions::Read(std::istream &is, bool binary) {
    ExpectToken(is, binary, "<NnetOptimizeOptions>");
    ExpectToken(is, binary, "<Optimize>");
    ReadBasicType(is, binary, &optimize);
    ExpectToken(is, binary, "<ConsolidateModelUpdate>");
    ReadBasicType(is, binary, &consolidate_model_update);
    ExpectToken(is, binary, "<PropagateInPlace>");
    ReadBasicType(is, binary, &propagate_in_place);
    ExpectToken(is, binary, "<BackpropInPlace>");
    ReadBasicType(is, binary, &backprop_in_place);
    if (PeekToken(is, binary) == 'O') {
      ExpectToken(is, binary, "<OptimizeRowOps>");
      ReadBasicType(is, binary, &optimize_row_ops);
    }
    if (PeekToken(is, binary) == 'S') {
      ExpectToken(is, binary, "<SplitRowOps>");
      ReadBasicType(is, binary, &split_row_ops);
    }
    if (PeekToken(is, binary) == 'E') {
      ExpectToken(is, binary, "<ExtendMatrices>");
      ReadBasicType(is, binary, &extend_matrices);
    }
    ExpectToken(is, binary, "<ConvertAddition>");
    ReadBasicType(is, binary, &convert_addition);
    ExpectToken(is, binary, "<RemoveAssignments>");
    ReadBasicType(is, binary, &remove_assignments);
    ExpectToken(is, binary, "<AllowLeftMerge>");
    ReadBasicType(is, binary, &allow_left_merge);
    ExpectToken(is, binary, "<AllowRightMerge>");
    ReadBasicType(is, binary, &allow_right_merge);
    ExpectToken(is, binary, "<InitializeUndefined>");
    ReadBasicType(is, binary, &initialize_undefined);
    ExpectToken(is, binary, "<MoveSizingCommands>");
    ReadBasicType(is, binary, &move_sizing_commands);
    ExpectToken(is, binary, "<AllocateFromOther>");
    ReadBasicType(is, binary, &allocate_from_other);
    ExpectToken(is, binary, "<MinDerivTime>");
    ReadBasicType(is, binary, &min_deriv_time);
    ExpectToken(is, binary, "<MaxDerivTime>");
    ReadBasicType(is, binary, &max_deriv_time);
    if (PeekToken(is, binary) == 'M') {
      ExpectToken(is, binary, "<MaxDerivTimeRelative>");
      ReadBasicType(is, binary, &max_deriv_time_relative);
    }
    if (PeekToken(is, binary) == 'S') {
      ExpectToken(is, binary, "<SnipRowOps>");
      ReadBasicType(is, binary, &snip_row_ops);
    }
    if (PeekToken(is, binary) == 'M') {
      ExpectToken(is, binary, "<MemoryCompressionLevel>");
      ReadBasicType(is, binary, &memory_compression_level);
    }
    ExpectToken(is, binary, "</NnetOptimizeOptions>");
  }
  
  void NnetOptimizeOptions::Write(std::ostream &os, bool binary) const {
    WriteToken(os, binary, "<NnetOptimizeOptions>");
    WriteToken(os, binary, "<Optimize>");
    WriteBasicType(os, binary, optimize);
    WriteToken(os, binary, "<ConsolidateModelUpdate>");
    WriteBasicType(os, binary, consolidate_model_update);
    WriteToken(os, binary, "<PropagateInPlace>");
    WriteBasicType(os, binary, propagate_in_place);
    WriteToken(os, binary, "<BackpropInPlace>");
    WriteBasicType(os, binary, backprop_in_place);
    WriteToken(os, binary, "<OptimizeRowOps>");
    WriteBasicType(os, binary, optimize_row_ops);
    WriteToken(os, binary, "<SplitRowOps>");
    WriteBasicType(os, binary, split_row_ops);
    WriteToken(os, binary, "<ExtendMatrices>");
    WriteBasicType(os, binary, extend_matrices);
    WriteToken(os, binary, "<ConvertAddition>");
    WriteBasicType(os, binary, convert_addition);
    WriteToken(os, binary, "<RemoveAssignments>");
    WriteBasicType(os, binary, remove_assignments);
    WriteToken(os, binary, "<AllowLeftMerge>");
    WriteBasicType(os, binary, allow_left_merge);
    WriteToken(os, binary, "<AllowRightMerge>");
    WriteBasicType(os, binary, allow_right_merge);
    WriteToken(os, binary, "<InitializeUndefined>");
    WriteBasicType(os, binary, initialize_undefined);
    WriteToken(os, binary, "<MoveSizingCommands>");
    WriteBasicType(os, binary, move_sizing_commands);
    WriteToken(os, binary, "<AllocateFromOther>");
    WriteBasicType(os, binary, allocate_from_other);
    WriteToken(os, binary, "<MinDerivTime>");
    WriteBasicType(os, binary, min_deriv_time);
    WriteToken(os, binary, "<MaxDerivTime>");
    WriteBasicType(os, binary, max_deriv_time);
    WriteToken(os, binary, "<MaxDerivTimeRelative>");
    WriteBasicType(os, binary, max_deriv_time_relative);
    WriteToken(os, binary, "<SnipRowOps>");
    WriteBasicType(os, binary, snip_row_ops);
    WriteToken(os, binary, "<MemoryCompressionLevel>");
    WriteBasicType(os, binary, memory_compression_level);
    WriteToken(os, binary, "</NnetOptimizeOptions>");
  }
  
  bool NnetOptimizeOptions::operator == (const NnetOptimizeOptions &other) const {
    return (other.optimize == optimize &&
            other.consolidate_model_update == consolidate_model_update &&
            other.propagate_in_place == propagate_in_place &&
            other.backprop_in_place == backprop_in_place &&
            other.optimize_row_ops == optimize_row_ops &&
            other.split_row_ops == split_row_ops &&
            other.convert_addition == convert_addition &&
            other.remove_assignments == remove_assignments &&
            other.allow_left_merge == allow_left_merge &&
            other.allow_right_merge == allow_right_merge &&
            other.initialize_undefined == initialize_undefined &&
            other.move_sizing_commands == move_sizing_commands &&
            other.allocate_from_other == allocate_from_other &&
            other.min_deriv_time == min_deriv_time &&
            other.max_deriv_time == max_deriv_time &&
            other.max_deriv_time_relative == max_deriv_time_relative &&
            other.snip_row_ops == snip_row_ops &&
            other.memory_compression_level == memory_compression_level);
  }
  
  // move commands that resize and zero matrices to as late/early as possible.
  // (however, keep input and output commands where they were; it creates other
  // headaches if we move those).
  void MoveSizingCommands(const Nnet &nnet, NnetComputation *computation) {
    ComputationVariables variables;
    variables.Init(*computation);
    std::vector<CommandAttributes> attributes;
    ComputeCommandAttributes(nnet, *computation, variables, &attributes);
    std::vector<std::vector<Access> > variable_accesses;
    ComputeVariableAccesses(variables, attributes, &variable_accesses);
    std::vector<MatrixAccesses> matrix_accesses;
    ComputeMatrixAccesses(nnet, *computation, variables, attributes,
                          &matrix_accesses);
  
    // The way we will renumber the commands is, we will first set this vector up
    // with pairs (command-index * 3, pointer-to-command), and we will then modify
    // the command-indexes in this vector to the numbers that we want, and sort
    // it.  The reason for the * 3 is so that we can number commands "just-after"
    // existing indexes (by adding 1) and "just-before" (by subtracting 1).
    int32 num_commands = computation->commands.size(),
        num_matrices = matrix_accesses.size();
  
    // Matrix allocation commands tend to be followed by a command that zeroes the
    // matrix.  We want to treat the two commands as a single unit for purposes of
    // reordering.  is_command_pair[c] will be true if command c is the first
    // element of such a pair.
    std::vector<bool> is_command_pair(num_commands, false);
    for (int32 c = 0; c + 1 < num_commands; c++) {
      if (computation->commands[c].command_type == kAllocMatrix &&
          computation->commands[c+1].command_type == kSetConst &&
          computation->commands[c].arg1 == computation->commands[c+1].arg1 &&
          computation->commands[c+1].alpha == 0.0) {
        is_command_pair[c] = true;
      }
    }
  
    // 'command_reordering' contains (new-number, old-number) of commands.
    // the new-number is multiplied by 3 for reasons explained above.
    std::vector<std::pair<int32,int32> >
        command_reordering(num_commands);
    // Note: for now we include the second-elements-of-pairs (i.e.  the zeroing
    // commands that follow allocation commands) here; we'll ignore them later.
    for (int32 c = 0; c < num_commands; c++) {
      command_reordering[c].first = c * 3;
      command_reordering[c].second = c;
    }
    for (int32 m = 1; m < num_matrices; m++) {
      const MatrixAccesses &ma = matrix_accesses[m];
      // The following if-block relates to reordering of allocation (and,
      // implicitly, zeroing) commands.
      if (ma.allocate_command != -1 &&
          computation->commands[ma.allocate_command].command_type == kAllocMatrix) {
        // first_access_command will be index of first access, except for the
        // zeroing command that immediately follows the initialization command.
        int32 first_access_command = -1;
        // this block sets 'first_access_command'.
        if (!ma.accesses.empty()) {
          first_access_command = ma.accesses[0].command_index;
          if (first_access_command == ma.allocate_command + 1 &&
              is_command_pair[ma.allocate_command]) {
            if (ma.accesses.size() > 1)
              first_access_command = ma.accesses[1].command_index;
            else
              first_access_command = -1;
          }
        }
        if (first_access_command != -1) {
          KALDI_ASSERT(first_access_command > ma.allocate_command);
          // move the initialization command to just before the first access.
          command_reordering[ma.allocate_command].first =
              first_access_command * 3 - 1;
        }
      }
      // The following if-block relates to reordering of deallocation
      // commands.
      if (ma.deallocate_command != -1 && !ma.accesses.empty() &&
          computation->commands[ma.deallocate_command].command_type ==
          kDeallocMatrix) {
        int32 last_access_command = ma.accesses.back().command_index;
        // move the deallocation command to just after the last access.
        command_reordering[ma.deallocate_command].first =
            last_access_command * 3 + 1;
      }
    }
    std::sort(command_reordering.begin(), command_reordering.end());
    std::vector<NnetComputation::Command> reordered_commands;
    reordered_commands.reserve(num_commands);
    for (int32 c = 0; c < num_commands; c++) {
      int32 old_index = command_reordering[c].second;
      NnetComputation::Command &old_command = computation->commands[old_index];
      // the following assert is because this optimization is not allowed
      // after looped optimization.
      KALDI_ASSERT(old_command.command_type != kGotoLabel);
      if (old_index > 0 && is_command_pair[old_index - 1]) {
        // If the old command-index was a zeroing command that follows
        // an allocation command, ignore it; it will be reordered to
        // right after wherever the allocation command went, and we'll
        // deal with it when we deal with the first element of the pair.
        continue;
      } else {
        reordered_commands.push_back(computation->commands[old_index]);
        if (is_command_pair[old_index]) {
          // if this command is the first member of an (allocation, zeroing)
          // pair then we need to deal with the zeroing command as well.
          reordered_commands.push_back(computation->commands[old_index + 1]);
        }
      }
    }
    computation->commands = reordered_commands;
  }
  
  // This function removes commands of type kSetConst (with alpha=0.0), where
  // possible.
  void RemoveUnnecessaryZeroing(const Nnet &nnet,
                                NnetComputation *computation) {
    Analyzer a;
    a.Init(nnet, *computation);
  
    // OK, now we'll work out which matrices have all their pieces (i.e. all the
    // variables belonging to that matrix) written to as the first instruction
    // apart from the initial zeroing.  These matrices can have the initial
    // zeroing replaced by a sizing operation that leaves the data undefined.
    int32 num_matrices = a.matrix_accesses.size();
    for (int32 matrix_index = 0; matrix_index < num_matrices; matrix_index++) {
      const MatrixAccesses &accesses = a.matrix_accesses[matrix_index];
      if (accesses.accesses.empty())
        continue;
      int32 zeroing_command_index = accesses.accesses[0].command_index;
      NnetComputation::Command *command =
          &(computation->commands[zeroing_command_index]);
      if (!(command->command_type == kSetConst &&
            command->alpha == 0.0)) {
        continue;  // First command is not a zeroing command
      }
      // OK, the first command that accesses this matrix is a zeroing command;
      // we're going to figure out whether it was necessary.
      std::vector<int32> variables_for_matrix;
      a.variables.AppendVariablesForMatrix(matrix_index, &variables_for_matrix);
      bool all_variables_ok = true;  // if this stays true, it means we don't need
                                     // the initial zeroing.
      for (size_t i = 0; i < variables_for_matrix.size(); i++) {
        int32 variable_index = variables_for_matrix[i];
        const std::vector<Access> &v_accesses =
            a.variable_accesses[variable_index];
        if (v_accesses.size() > 1 &&
            v_accesses[1].access_type != kWriteAccess) {
          all_variables_ok = false;  // first access after zeroing was not a write
          break;
        }
        if (v_accesses.size() == 1 &&
            accesses.is_output) {
          // the only command that touches this variable is the allocation, and it
          // is an output variable.  (this is unusual, but can happen e.g. if it's
          // a derivative, but due to min_deriv_time and max_deriv_time it ends up
          // always being zero.
          all_variables_ok = false;
          break;
        }
      }
      if (all_variables_ok) {
        // Here is where the change actually happens.
        // Remove the zeroing command.
        command->command_type = kNoOperation;
      }
    }
  }
  
  /*
    This function is called from RemoveUnnecessaryAllocation.  The input is two
    sorted, unique lists, of (deallocation-commands, allocation-commands)
    e.g. (d1, d2, d3.. ), (a1, a2, a3..); and to the output is *appended* a list
    of pairs (d, a).  Each output pair must satisfy the property that d < a, and
    no member of the input lists may appear more than once in the output pairs
    (although it's OK for input a and d values not to appear in any output pairs).
  
    The goal of the implementation is to output as many pairs as possible, and
    secondarily for the pairs to be as close as possible to each other (to avoid
    wasting too much memory).  I'm not sure if this implementation achieves that.
  */
  static void ComputeCommandPairs(
      const std::pair<std::vector<int32>, std::vector<int32> > &lists,
      std::vector<std::pair<int32,int32> > *pairs) {
    std::vector<int32> d_list = lists.first;
  
    std::set<int32> a_set;
    CopyVectorToSet(lists.second, &a_set);
  
    std::vector<int32>::reverse_iterator iter = d_list.rbegin(),
        end = d_list.rend();
  
    // from the latest to the earliest deallocation command...
    for (; iter != end; ++iter) {
      int32 d = *iter;
      std::set<int32>::iterator a_iter = a_set.upper_bound(d);
      // a_iter is an iterator to the first element a of the set 'a_set' such
      // that a > d, or a_set.end() if no such element exists.
      if (a_iter == a_set.end())
        continue;  // we will output no pair for this d.
      int32 a = *a_iter;
      KALDI_PARANOID_ASSERT(a > d);  // or code error
      a_set.erase(a_iter);  // remove this a from 'a_set' so it doesn't get used
                            // twice
      pairs->push_back(std::pair<int32,int32>(d, a));
    }
  }
  
  void RemoveUnnecessaryAllocation(const Nnet &nnet,
                                   NnetComputation *computation) {
    // For each size of matrix and stride-type, represented as a pair<int32,int32>
    // (the num-rows, and the num-cols * (stride-type == kDefaultStride ? 1 : -1), we
    // accumulate a list of indexes of deallocation commands that
    // are for that size, and a list of indexes of allocation commands
    // for that size.
    // For each distinct matrix size, we then call ComputeCommandPairs on those
    // two lists, to get pairs of (deallocation, allocation) command-indexes that
    // we can optimize out to a single command.
  
    // The map is from a (num-rows,num-columns) to two lists, of
    // (deallocation-commands, allocation-commands).  The order may seem
    // backwards, but that's the order of the pairs we are looking for.
    typedef unordered_map<std::pair<int32,int32>,
        std::pair<std::vector<int32>,std::vector<int32> >,
        PairHasher<int32> > MapType;
    MapType pair_map;
    int32 num_commands = computation->commands.size();
    for (int32 command_index = 0; command_index < num_commands; command_index++) {
      NnetComputation::Command &command = computation->commands[command_index];
      if (command.command_type == kAllocMatrix ||
          command.command_type == kDeallocMatrix) {
        int32 s = command.arg1, m = computation->submatrices[s].matrix_index,
            num_rows = computation->matrices[m].num_rows,
            num_cols = computation->matrices[m].num_cols,
            num_cols_mod = num_cols * (
                computation->matrices[m].stride_type == kDefaultStride ? 1 : -1);
        std::pair<int32,int32> p(num_rows, num_cols_mod);
        std::pair<std::vector<int32>,std::vector<int32> > &lists = pair_map[p];
        if (command.command_type == kDeallocMatrix)
          lists.first.push_back(command_index);
        else
          lists.second.push_back(command_index);
      }
    }
  
    MapType::const_iterator iter = pair_map.begin(), end = pair_map.end();
    std::vector<std::pair<int32,int32> > command_pairs;
    for (; iter != end; ++iter)
      ComputeCommandPairs(iter->second, &command_pairs);
  
    for (size_t i = 0; i < command_pairs.size(); i++) {
      int32 dealloc_index = command_pairs[i].first,
          alloc_index = command_pairs[i].second;
      NnetComputation::Command
          &dealloc_command = computation->commands[dealloc_index],
          &alloc_command = computation->commands[alloc_index];
      KALDI_ASSERT(dealloc_command.command_type ==
                   kDeallocMatrix);
      KALDI_ASSERT(alloc_command.command_type ==
                   kAllocMatrix);
      // remove the deallocation command.
      dealloc_command.command_type =  kNoOperation;
      alloc_command.arg2 = dealloc_command.arg1;
      alloc_command.command_type = kSwapMatrix;
    }
    RemoveNoOps(computation);
    FixGotoLabel(computation);
  }
  
  
  void VariableMergingOptimization(const NnetOptimizeOptions &config,
                                   const Nnet &nnet,
                                   NnetComputation *computation) {
    bool changed = true;
    while (changed) {
      changed = false;
      VariableMergingOptimizer opt(config, nnet, computation);
      if (opt.MergeVariables())
        changed = true;
    }
  }
  
  
  void ConvertAdditionToAssignment(const Nnet &nnet,
                                   NnetComputation *computation) {
    Analyzer analyzer;
    analyzer.Init(nnet, *computation);
    ComputationAnalysis analysis(*computation, analyzer);
    int32 num_commands = computation->commands.size();
    for (int32 command = 0; command < num_commands; command++) {
      NnetComputation::Command &c = computation->commands[command];
      switch (c.command_type) {
        case kMatrixAdd: case kAddRows: case kAddRowsMulti:
        case kAddToRowsMulti: {
          const std::vector<int32> &submatrices_written =
              analyzer.command_attributes[command].submatrices_written;
          KALDI_ASSERT(!submatrices_written.empty());
          std::vector<int32>::const_iterator iter = submatrices_written.begin(),
              end = submatrices_written.end();
          bool can_convert = true;
          for (; iter != end; ++iter) {
            int32 submatrix_written = *iter;
            int32 first_access_command = analysis.FirstNontrivialAccess(
                submatrix_written);
            // first_access_command is first command other than zeroing and
            // allocation that accesses this submatrix.  It can be assumed to be a
            // write command, since it makes no sense to read a variable before
            // it's written to.  If it's before this command then we need to add
            // rather than copy; we can't do the conversion to a copy command.
            if (first_access_command != command) {
              can_convert = false;
              break;
            }
          }
          if (can_convert) {  // convert to a copy command.
            switch (c.command_type) {
              case kMatrixAdd: c.command_type = kMatrixCopy;
                break;
              case kAddRows: c.command_type = kCopyRows;
                 break;
              case kAddRowsMulti: c.command_type = kCopyRowsMulti;
                break;
              // note: kCopyToRowsMulti does not currently support alpha != 1.0.
              case kAddToRowsMulti: if (c.alpha == 1.0) c.command_type = kCopyToRowsMulti;
                break;
              default: KALDI_ERR << "Unexpected command type.";
            }
          }
          break;
        }
        default:
          break;
      }
    }
  }
  
  
  int32 MaxOutputTimeInRequest(const ComputationRequest &request) {
    int32 ans = std::numeric_limits<int32>::min();
    for (size_t i = 0; i < request.outputs.size(); i++) {
      const std::vector<Index> &indexes (request.outputs[i].indexes);
      std::vector<Index>::const_iterator iter = indexes.begin(),
          end = indexes.end();
      for (; iter != end; ++iter)
        if (iter->t > ans)
          ans = iter->t;
    }
    if (ans == std::numeric_limits<int32>::min()) {
      KALDI_ERR << "Failed to find any output indexes in computation request.";
    }
    return ans;
  }
  
  
  void Optimize(const NnetOptimizeOptions &config,
                const Nnet &nnet,
                int32 max_output_time_in_request,
                NnetComputation *computation) {
    if (GetVerboseLevel() >= 3) {
      CheckComputation(nnet, *computation, true);
      KALDI_LOG << "Before optimization, max memory use (bytes) = "
                << GetMaxMemoryUse(*computation);
    }
  
    { // Call LimitDerivativeTimes(); it's important that this
      // should come before other optimizations (search for "insist" in
      // nnet-optimize-utils.cc for the reasons).
      // this will do nothing unless --min-deriv-time or --max-deriv-time
      // or --max-deriv-time-relative was set.
      int32 max_deriv_time = config.max_deriv_time;
      if (config.max_deriv_time_relative != std::numeric_limits<int32>::max())
        max_deriv_time = config.max_deriv_time_relative +
            max_output_time_in_request;
      if (config.min_deriv_time != std::numeric_limits<int32>::min() ||
          max_deriv_time != std::numeric_limits<int32>::max())
        LimitDerivativeTimes(nnet, config.min_deriv_time,
                             max_deriv_time, computation);
    }
  
    if (GetVerboseLevel() >= 3)
      CheckComputation(nnet, *computation, true);
  
    if (config.optimize && config.consolidate_model_update) {
      ConsolidateModelUpdate(nnet, computation);
  
      if (GetVerboseLevel() >= 3)
        CheckComputation(nnet, *computation, true);
    }
  
    if (config.optimize && config.convert_addition) {
      ConvertAdditionToAssignment(nnet, computation);
      if (GetVerboseLevel() >= 3)
        CheckComputation(nnet, *computation, true);
    }
  
  
    if (config.optimize &&  (config.snip_row_ops || config.optimize_row_ops ||
                             config.split_row_ops)) {
      bool must_renumber = false;
      if (config.snip_row_ops && SnipRowOps(computation))
        must_renumber = true;
      if (config.split_row_ops && SplitRowOps(computation))
        must_renumber = true;
      if (config.optimize_row_ops && ReplaceRowWithMatrixOps(computation))
        must_renumber = true;
  
      if (must_renumber) {
        RenumberComputation(computation);
        if (GetVerboseLevel() >= 3)
          CheckComputation(nnet, *computation, false);
      }
    }
  
    if (config.optimize && config.extend_matrices &&
        !config.optimize_looped_computation) {
      ExtendMatrices(computation);
      if (GetVerboseLevel() >= 3)
        CheckComputation(nnet, *computation, false);
    }
  
  
    if (config.optimize &&
        (config.remove_assignments || config.backprop_in_place ||
         config.propagate_in_place)) {
      VariableMergingOptimization(config, nnet, computation);
      if (GetVerboseLevel() >= 3)
        CheckComputation(nnet, *computation, false);
    }
  
    if (config.optimize && config.initialize_undefined) {
      RemoveUnnecessaryZeroing(nnet, computation);
      if (GetVerboseLevel() >= 3)
        CheckComputation(nnet, *computation, false);
    }
  
  
    if ((config.optimize && config.move_sizing_commands) ||
        config.optimize_looped_computation) {
      MoveSizingCommands(nnet, computation);
      if (GetVerboseLevel() >= 3)
        CheckComputation(nnet, *computation, false);
    }
  
    // the looped computation optimization has to go before
    // 'RemoveUnnecessaryAllocation()'.  We don't gate this by 'config.optimize'
    // because it's necessary for looped computation to run.
    if (config.optimize_looped_computation) {
      OptimizeLoopedComputation(nnet, computation);
      if (GetVerboseLevel() >= 3)
        CheckComputation(nnet, *computation, false);
    }
  
    if (config.optimize && config.allocate_from_other &&
        !config.optimize_looped_computation) {
      // Don't do this if it's an looped computation because we're not sure if it
      // would be correct in that case, as written.  In any case the performance
      // benefit is tiny.
      RemoveUnnecessaryAllocation(nnet, computation);
      if (GetVerboseLevel() >= 3)
        CheckComputation(nnet, *computation, false);
    }
  
    // The following is not configurable because it is necessary for
    // the computation to run correctly (we do it after compilation too,
    // but the operations may have been put out of order by
    // other optimizations.)
    ConsolidateIoOperations(nnet, computation);
  
    if (config.optimize_looped_computation)
      FixGotoLabel(computation);
  
  
    if (config.memory_compression_level > 0 &&
        !config.optimize_looped_computation) {
      OptimizeMemoryCompression(nnet, config.memory_compression_level,
                                computation);
      if (GetVerboseLevel() >= 3)
        CheckComputation(nnet, *computation, false);
    }
  
    if (GetVerboseLevel() >= 3) {
      CheckComputation(nnet, *computation, false);
      KALDI_LOG << "After optimization, max memory use (bytes) = "
                << GetMaxMemoryUse(*computation);
    }
  }
  
  
  CachingOptimizingCompiler::CachingOptimizingCompiler(
      const Nnet &nnet,
      const CachingOptimizingCompilerOptions config):
      nnet_(nnet), config_(config),
      seconds_taken_total_(0.0), seconds_taken_compile_(0.0),
      seconds_taken_optimize_(0.0), seconds_taken_expand_(0.0),
      seconds_taken_check_(0.0), seconds_taken_indexes_(0.0),
      seconds_taken_io_(0.0), cache_(config.cache_capacity),
      nnet_left_context_(-1), nnet_right_context_(-1) { }
  
  CachingOptimizingCompiler::CachingOptimizingCompiler(
      const Nnet &nnet,
      const NnetOptimizeOptions &opt_config,
      const CachingOptimizingCompilerOptions config):
      nnet_(nnet), config_(config), opt_config_(opt_config),
      seconds_taken_total_(0.0), seconds_taken_compile_(0.0),
      seconds_taken_optimize_(0.0), seconds_taken_expand_(0.0),
      seconds_taken_check_(0.0), seconds_taken_indexes_(0.0),
      seconds_taken_io_(0.0), cache_(config.cache_capacity),
      nnet_left_context_(-1), nnet_right_context_(-1) { }
  
  void CachingOptimizingCompiler::GetSimpleNnetContext(
      int32 *nnet_left_context, int32 *nnet_right_context) {
    if (nnet_left_context_ == -1) {
      ComputeSimpleNnetContext(nnet_, &nnet_left_context_,
                               &nnet_right_context_);
    }
    *nnet_left_context = nnet_left_context_;
    *nnet_right_context = nnet_right_context_;
  }
  
  void CachingOptimizingCompiler::ReadCache(std::istream &is, bool binary) {
    {
      Timer timer;
      NnetOptimizeOptions opt_config_cached;
      opt_config_cached.Read(is, binary);
      // we won't read cached computations if any optimize option has been changed.
      if (!(opt_config_ == opt_config_cached))
        return;
      cache_.Read(is, binary);
      seconds_taken_io_ += timer.Elapsed();
    }
    if (GetVerboseLevel() >= 2) {
      Timer timer;
      cache_.Check(nnet_);
      seconds_taken_check_ += timer.Elapsed();
      // we consider the check time part of the total time...  this is very
      // arbitrary but it only affects printed times-taken.
      seconds_taken_total_ += timer.Elapsed();
    }
  
  }
  
  void CachingOptimizingCompiler::WriteCache(std::ostream &os, bool binary) {
    Timer timer;
    opt_config_.Write(os, binary);
    cache_.Write(os, binary);
    seconds_taken_io_ += timer.Elapsed();
  }
  
  CachingOptimizingCompiler::~CachingOptimizingCompiler() {
    if (seconds_taken_total_ > 0.0 || seconds_taken_io_ > 0.0) {
      std::ostringstream os;
      double seconds_taken_misc = seconds_taken_total_ - seconds_taken_compile_
          - seconds_taken_optimize_ - seconds_taken_expand_
          - seconds_taken_check_ - seconds_taken_indexes_;
      os << std::setprecision(3) << seconds_taken_total_
         << " seconds taken in nnet3 compilation total (breakdown: "
         << seconds_taken_compile_ << " compilation, "
         << seconds_taken_optimize_ << " optimization, "
         << seconds_taken_expand_ << " shortcut expansion, "
         << seconds_taken_check_ << " checking, "
         << seconds_taken_indexes_ << " computing indexes, "
         << seconds_taken_misc << " misc.) + "
         << seconds_taken_io_ << " I/O.";
      KALDI_LOG << os.str();
      // note: the leftover amount is misc things like hashing and == comparisons on
      // computation-requests, and calling RequestIsDecomposable().
    }
  }
  
  std::shared_ptr<const NnetComputation> CachingOptimizingCompiler::Compile(
      const ComputationRequest  &in_request) {
    Timer timer;
    std::shared_ptr<const NnetComputation>  ans = CompileInternal(in_request);
    seconds_taken_total_ += timer.Elapsed();
    return ans;
  }
  
  std::shared_ptr<const NnetComputation> CachingOptimizingCompiler::CompileInternal(
      const ComputationRequest  &request) {
    std::shared_ptr<const NnetComputation> ans = cache_.Find(request);
    if (ans != NULL) {
      return ans;
    } else {
      const NnetComputation *computation = NULL;
      if (config_.use_shortcut)
        computation = CompileViaShortcut(request);
      if (computation == NULL)
        computation = CompileNoShortcut(request);
      KALDI_ASSERT(computation != NULL);
      return cache_.Insert(request, computation);
    }
  }
  
  
  const NnetComputation *CachingOptimizingCompiler::CompileNoShortcut(
      const ComputationRequest &request) {
  
    Compiler compiler(request, nnet_);
    // note: 'opts' only contains 'output_debug_info', which is true by default.
    // There may be situations where we'd prefer not to keep it, for speed.
    CompilerOptions opts;
    NnetComputation *computation = new NnetComputation;
  
    {
      Timer timer;
      compiler.CreateComputation(opts, computation);
      seconds_taken_compile_ += timer.Elapsed();
    }
  
    int32 verbose_cutoff = 4;
    if (GetVerboseLevel() >= verbose_cutoff) {
      std::ostringstream os1;
      request.Print(os1);
      KALDI_LOG << "Computation request is " << os1.str();
      std::ostringstream os2;
      computation->Print(os2, nnet_);
      KALDI_LOG << "Generated computation is: " << os2.str();
    }
  
    { // some checking.  Note: there may come a time when we might
      // prefer to disable this checking.
      Timer timer;
      CheckComputationOptions check_config;
      // we can do the rewrite check since it's before optimization.
      check_config.check_rewrite = true;
      ComputationChecker checker(check_config, nnet_, *computation);
      checker.Check();
      seconds_taken_check_ += timer.Elapsed();
    }
  
    {
      Timer timer;
      Optimize(opt_config_, nnet_,
               MaxOutputTimeInRequest(request),
               computation);
      seconds_taken_optimize_ += timer.Elapsed();
    }
  
    if (GetVerboseLevel() >= verbose_cutoff) {
      std::ostringstream os;
      computation->Print(os, nnet_);
      KALDI_LOG << "Optimized computation is: " << os.str();
    }
  
    {  // check the computation again.
      Timer timer;
      CheckComputationOptions check_config;
      ComputationChecker checker(check_config, nnet_, *computation);
      checker.Check();
      seconds_taken_check_ += timer.Elapsed();
    }
  
    {
      Timer timer;
      computation->ComputeCudaIndexes();
      seconds_taken_indexes_ += timer.Elapsed();
    }
    return computation;
  }
  
  
  const NnetComputation *CachingOptimizingCompiler::CompileViaShortcut(
      const ComputationRequest &request) {
    int32 num_n_values;
    ComputationRequest mini_request;
    if (!RequestIsDecomposable(request, &mini_request, &num_n_values))
      return NULL;
  
    // By invoking CompileInternal() on the mini request, we go through the same
    // caching process as for any externally requested computation.
    std::shared_ptr<const NnetComputation> mini_computation =
        CompileInternal(mini_request);
  
    // note: by default we always create debug_info, even in regular compilation.
    // (e.g. it defaults to true in CompilerOptions).  If it really seems to be a
    // significant overhead, we can revisit this at some point in future.
    bool need_debug_info = true;
  
  
    NnetComputation *ans = new NnetComputation();
  
    {
      Timer timer;
      ExpandComputation(nnet_, request.misc_info, *mini_computation,
                        need_debug_info, num_n_values, ans);
      seconds_taken_expand_ += timer.Elapsed();
    }
    if (GetVerboseLevel() >= 3) {
      CheckComputation(nnet_, *ans, false);
    }
  
    {
      Timer timer;
      ans->ComputeCudaIndexes();
      seconds_taken_indexes_ += timer.Elapsed();
    }
    return ans;
  }
  
  
  
  /// Split the computation up into segments bounded by kNoOperationMarker.  For
  /// each segment, a pair of command-indexes (start, end) is output to the vector
  /// 'segments', so the commands in the segment (not including
  /// kNoOperationMarker) are numbered from start ... end - 1.
  static void SplitComputationIntoSegments(
      const NnetComputation &computation,
      std::vector<std::pair<int32, int32> > *segments) {
  
    int32 num_commands = computation.commands.size();
    segments->clear();
    int32 cur_start = 0;
    for (int32 c = 0; c < num_commands; c++) {
      if (computation.commands[c].command_type == kNoOperationMarker) {
        segments->push_back(std::pair<int32, int32>(cur_start, c));
        cur_start = c + 1;
      }
    }
    segments->push_back(std::pair<int32, int32>(cur_start, num_commands));
  }
  
  
  void ConsolidateIoOperations(const Nnet &nnet,
                               NnetComputation *computation) {
    // These segments, represented as (start-index, end-index),
    // are segments of the computation separated by kNoOperationMarker.
    std::vector<std::pair<int32, int32> > segments;
    SplitComputationIntoSegments(*computation, &segments);
  
    int32 num_commands = computation->commands.size();
    std::vector<NnetComputation::Command> reordered_commands(num_commands);
    // put kNoOperationMarker between all segments in the reordered commands.
    for (size_t s = 0; s + 1 < segments.size(); s++)
      reordered_commands[segments[s].second].command_type = kNoOperationMarker;
  
    // for each segment we'll divide the commands up into those that must appear
    // at the left of the segment (kAcceptInput for inputs and output-derivs), those
    // that must appear in the middle (most commands), those that must appear
    // on the right (kProvideOutput for output nodes and input derivatives).
    std::vector<int32> left_commands, middle_commands, right_commands;
  
    for (size_t s = 0; s < segments.size(); s++) {
      int32 segment_start = segments[s].first,
          segment_end = segments[s].second;
      left_commands.clear();
      middle_commands.clear();
      right_commands.clear();
      for (int32 c = segment_start; c < segment_end; c++) {
        if (computation->commands[c].command_type == kProvideOutput) {
          right_commands.push_back(c);
        } else if (computation->commands[c].command_type == kAcceptInput) {
          left_commands.push_back(c);
        } else {
          middle_commands.push_back(c);
        }
      }
      std::vector<int32>::const_iterator iter = left_commands.begin(),
          end = left_commands.end();
      int32 c = segment_start;
      for (; iter != end; ++iter, ++c)
        reordered_commands[c] = computation->commands[*iter];
      iter = middle_commands.begin();
      end = middle_commands.end();
      for (; iter != end; ++iter, ++c)
        reordered_commands[c] = computation->commands[*iter];
      iter = right_commands.begin();
      end = right_commands.end();
      for (; iter != end; ++iter, ++c)
        reordered_commands[c] = computation->commands[*iter];
      KALDI_ASSERT(c == segment_end);
    }
    computation->commands.swap(reordered_commands);
  }
  
  
  
  
  } // namespace nnet3
  } // namespace kaldi