nnet-optimize.cc 36.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
// nnet3/nnet-optimize.cc

// Copyright      2015  Johns Hopkins University (author: Daniel Povey)
//                2015  Xiaohui Zhang

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include <iomanip>
#include "nnet3/nnet-optimize.h"
#include "nnet3/nnet-optimize-utils.h"
#include "nnet3/nnet-utils.h"
#include "base/timer.h"

namespace kaldi {
namespace nnet3 {

void NnetOptimizeOptions::Read(std::istream &is, bool binary) {
  ExpectToken(is, binary, "<NnetOptimizeOptions>");
  ExpectToken(is, binary, "<Optimize>");
  ReadBasicType(is, binary, &optimize);
  ExpectToken(is, binary, "<ConsolidateModelUpdate>");
  ReadBasicType(is, binary, &consolidate_model_update);
  ExpectToken(is, binary, "<PropagateInPlace>");
  ReadBasicType(is, binary, &propagate_in_place);
  ExpectToken(is, binary, "<BackpropInPlace>");
  ReadBasicType(is, binary, &backprop_in_place);
  if (PeekToken(is, binary) == 'O') {
    ExpectToken(is, binary, "<OptimizeRowOps>");
    ReadBasicType(is, binary, &optimize_row_ops);
  }
  if (PeekToken(is, binary) == 'S') {
    ExpectToken(is, binary, "<SplitRowOps>");
    ReadBasicType(is, binary, &split_row_ops);
  }
  if (PeekToken(is, binary) == 'E') {
    ExpectToken(is, binary, "<ExtendMatrices>");
    ReadBasicType(is, binary, &extend_matrices);
  }
  ExpectToken(is, binary, "<ConvertAddition>");
  ReadBasicType(is, binary, &convert_addition);
  ExpectToken(is, binary, "<RemoveAssignments>");
  ReadBasicType(is, binary, &remove_assignments);
  ExpectToken(is, binary, "<AllowLeftMerge>");
  ReadBasicType(is, binary, &allow_left_merge);
  ExpectToken(is, binary, "<AllowRightMerge>");
  ReadBasicType(is, binary, &allow_right_merge);
  ExpectToken(is, binary, "<InitializeUndefined>");
  ReadBasicType(is, binary, &initialize_undefined);
  ExpectToken(is, binary, "<MoveSizingCommands>");
  ReadBasicType(is, binary, &move_sizing_commands);
  ExpectToken(is, binary, "<AllocateFromOther>");
  ReadBasicType(is, binary, &allocate_from_other);
  ExpectToken(is, binary, "<MinDerivTime>");
  ReadBasicType(is, binary, &min_deriv_time);
  ExpectToken(is, binary, "<MaxDerivTime>");
  ReadBasicType(is, binary, &max_deriv_time);
  if (PeekToken(is, binary) == 'M') {
    ExpectToken(is, binary, "<MaxDerivTimeRelative>");
    ReadBasicType(is, binary, &max_deriv_time_relative);
  }
  if (PeekToken(is, binary) == 'S') {
    ExpectToken(is, binary, "<SnipRowOps>");
    ReadBasicType(is, binary, &snip_row_ops);
  }
  if (PeekToken(is, binary) == 'M') {
    ExpectToken(is, binary, "<MemoryCompressionLevel>");
    ReadBasicType(is, binary, &memory_compression_level);
  }
  ExpectToken(is, binary, "</NnetOptimizeOptions>");
}

void NnetOptimizeOptions::Write(std::ostream &os, bool binary) const {
  WriteToken(os, binary, "<NnetOptimizeOptions>");
  WriteToken(os, binary, "<Optimize>");
  WriteBasicType(os, binary, optimize);
  WriteToken(os, binary, "<ConsolidateModelUpdate>");
  WriteBasicType(os, binary, consolidate_model_update);
  WriteToken(os, binary, "<PropagateInPlace>");
  WriteBasicType(os, binary, propagate_in_place);
  WriteToken(os, binary, "<BackpropInPlace>");
  WriteBasicType(os, binary, backprop_in_place);
  WriteToken(os, binary, "<OptimizeRowOps>");
  WriteBasicType(os, binary, optimize_row_ops);
  WriteToken(os, binary, "<SplitRowOps>");
  WriteBasicType(os, binary, split_row_ops);
  WriteToken(os, binary, "<ExtendMatrices>");
  WriteBasicType(os, binary, extend_matrices);
  WriteToken(os, binary, "<ConvertAddition>");
  WriteBasicType(os, binary, convert_addition);
  WriteToken(os, binary, "<RemoveAssignments>");
  WriteBasicType(os, binary, remove_assignments);
  WriteToken(os, binary, "<AllowLeftMerge>");
  WriteBasicType(os, binary, allow_left_merge);
  WriteToken(os, binary, "<AllowRightMerge>");
  WriteBasicType(os, binary, allow_right_merge);
  WriteToken(os, binary, "<InitializeUndefined>");
  WriteBasicType(os, binary, initialize_undefined);
  WriteToken(os, binary, "<MoveSizingCommands>");
  WriteBasicType(os, binary, move_sizing_commands);
  WriteToken(os, binary, "<AllocateFromOther>");
  WriteBasicType(os, binary, allocate_from_other);
  WriteToken(os, binary, "<MinDerivTime>");
  WriteBasicType(os, binary, min_deriv_time);
  WriteToken(os, binary, "<MaxDerivTime>");
  WriteBasicType(os, binary, max_deriv_time);
  WriteToken(os, binary, "<MaxDerivTimeRelative>");
  WriteBasicType(os, binary, max_deriv_time_relative);
  WriteToken(os, binary, "<SnipRowOps>");
  WriteBasicType(os, binary, snip_row_ops);
  WriteToken(os, binary, "<MemoryCompressionLevel>");
  WriteBasicType(os, binary, memory_compression_level);
  WriteToken(os, binary, "</NnetOptimizeOptions>");
}

bool NnetOptimizeOptions::operator == (const NnetOptimizeOptions &other) const {
  return (other.optimize == optimize &&
          other.consolidate_model_update == consolidate_model_update &&
          other.propagate_in_place == propagate_in_place &&
          other.backprop_in_place == backprop_in_place &&
          other.optimize_row_ops == optimize_row_ops &&
          other.split_row_ops == split_row_ops &&
          other.convert_addition == convert_addition &&
          other.remove_assignments == remove_assignments &&
          other.allow_left_merge == allow_left_merge &&
          other.allow_right_merge == allow_right_merge &&
          other.initialize_undefined == initialize_undefined &&
          other.move_sizing_commands == move_sizing_commands &&
          other.allocate_from_other == allocate_from_other &&
          other.min_deriv_time == min_deriv_time &&
          other.max_deriv_time == max_deriv_time &&
          other.max_deriv_time_relative == max_deriv_time_relative &&
          other.snip_row_ops == snip_row_ops &&
          other.memory_compression_level == memory_compression_level);
}

// move commands that resize and zero matrices to as late/early as possible.
// (however, keep input and output commands where they were; it creates other
// headaches if we move those).
void MoveSizingCommands(const Nnet &nnet, NnetComputation *computation) {
  ComputationVariables variables;
  variables.Init(*computation);
  std::vector<CommandAttributes> attributes;
  ComputeCommandAttributes(nnet, *computation, variables, &attributes);
  std::vector<std::vector<Access> > variable_accesses;
  ComputeVariableAccesses(variables, attributes, &variable_accesses);
  std::vector<MatrixAccesses> matrix_accesses;
  ComputeMatrixAccesses(nnet, *computation, variables, attributes,
                        &matrix_accesses);

  // The way we will renumber the commands is, we will first set this vector up
  // with pairs (command-index * 3, pointer-to-command), and we will then modify
  // the command-indexes in this vector to the numbers that we want, and sort
  // it.  The reason for the * 3 is so that we can number commands "just-after"
  // existing indexes (by adding 1) and "just-before" (by subtracting 1).
  int32 num_commands = computation->commands.size(),
      num_matrices = matrix_accesses.size();

  // Matrix allocation commands tend to be followed by a command that zeroes the
  // matrix.  We want to treat the two commands as a single unit for purposes of
  // reordering.  is_command_pair[c] will be true if command c is the first
  // element of such a pair.
  std::vector<bool> is_command_pair(num_commands, false);
  for (int32 c = 0; c + 1 < num_commands; c++) {
    if (computation->commands[c].command_type == kAllocMatrix &&
        computation->commands[c+1].command_type == kSetConst &&
        computation->commands[c].arg1 == computation->commands[c+1].arg1 &&
        computation->commands[c+1].alpha == 0.0) {
      is_command_pair[c] = true;
    }
  }

  // 'command_reordering' contains (new-number, old-number) of commands.
  // the new-number is multiplied by 3 for reasons explained above.
  std::vector<std::pair<int32,int32> >
      command_reordering(num_commands);
  // Note: for now we include the second-elements-of-pairs (i.e.  the zeroing
  // commands that follow allocation commands) here; we'll ignore them later.
  for (int32 c = 0; c < num_commands; c++) {
    command_reordering[c].first = c * 3;
    command_reordering[c].second = c;
  }
  for (int32 m = 1; m < num_matrices; m++) {
    const MatrixAccesses &ma = matrix_accesses[m];
    // The following if-block relates to reordering of allocation (and,
    // implicitly, zeroing) commands.
    if (ma.allocate_command != -1 &&
        computation->commands[ma.allocate_command].command_type == kAllocMatrix) {
      // first_access_command will be index of first access, except for the
      // zeroing command that immediately follows the initialization command.
      int32 first_access_command = -1;
      // this block sets 'first_access_command'.
      if (!ma.accesses.empty()) {
        first_access_command = ma.accesses[0].command_index;
        if (first_access_command == ma.allocate_command + 1 &&
            is_command_pair[ma.allocate_command]) {
          if (ma.accesses.size() > 1)
            first_access_command = ma.accesses[1].command_index;
          else
            first_access_command = -1;
        }
      }
      if (first_access_command != -1) {
        KALDI_ASSERT(first_access_command > ma.allocate_command);
        // move the initialization command to just before the first access.
        command_reordering[ma.allocate_command].first =
            first_access_command * 3 - 1;
      }
    }
    // The following if-block relates to reordering of deallocation
    // commands.
    if (ma.deallocate_command != -1 && !ma.accesses.empty() &&
        computation->commands[ma.deallocate_command].command_type ==
        kDeallocMatrix) {
      int32 last_access_command = ma.accesses.back().command_index;
      // move the deallocation command to just after the last access.
      command_reordering[ma.deallocate_command].first =
          last_access_command * 3 + 1;
    }
  }
  std::sort(command_reordering.begin(), command_reordering.end());
  std::vector<NnetComputation::Command> reordered_commands;
  reordered_commands.reserve(num_commands);
  for (int32 c = 0; c < num_commands; c++) {
    int32 old_index = command_reordering[c].second;
    NnetComputation::Command &old_command = computation->commands[old_index];
    // the following assert is because this optimization is not allowed
    // after looped optimization.
    KALDI_ASSERT(old_command.command_type != kGotoLabel);
    if (old_index > 0 && is_command_pair[old_index - 1]) {
      // If the old command-index was a zeroing command that follows
      // an allocation command, ignore it; it will be reordered to
      // right after wherever the allocation command went, and we'll
      // deal with it when we deal with the first element of the pair.
      continue;
    } else {
      reordered_commands.push_back(computation->commands[old_index]);
      if (is_command_pair[old_index]) {
        // if this command is the first member of an (allocation, zeroing)
        // pair then we need to deal with the zeroing command as well.
        reordered_commands.push_back(computation->commands[old_index + 1]);
      }
    }
  }
  computation->commands = reordered_commands;
}

// This function removes commands of type kSetConst (with alpha=0.0), where
// possible.
void RemoveUnnecessaryZeroing(const Nnet &nnet,
                              NnetComputation *computation) {
  Analyzer a;
  a.Init(nnet, *computation);

  // OK, now we'll work out which matrices have all their pieces (i.e. all the
  // variables belonging to that matrix) written to as the first instruction
  // apart from the initial zeroing.  These matrices can have the initial
  // zeroing replaced by a sizing operation that leaves the data undefined.
  int32 num_matrices = a.matrix_accesses.size();
  for (int32 matrix_index = 0; matrix_index < num_matrices; matrix_index++) {
    const MatrixAccesses &accesses = a.matrix_accesses[matrix_index];
    if (accesses.accesses.empty())
      continue;
    int32 zeroing_command_index = accesses.accesses[0].command_index;
    NnetComputation::Command *command =
        &(computation->commands[zeroing_command_index]);
    if (!(command->command_type == kSetConst &&
          command->alpha == 0.0)) {
      continue;  // First command is not a zeroing command
    }
    // OK, the first command that accesses this matrix is a zeroing command;
    // we're going to figure out whether it was necessary.
    std::vector<int32> variables_for_matrix;
    a.variables.AppendVariablesForMatrix(matrix_index, &variables_for_matrix);
    bool all_variables_ok = true;  // if this stays true, it means we don't need
                                   // the initial zeroing.
    for (size_t i = 0; i < variables_for_matrix.size(); i++) {
      int32 variable_index = variables_for_matrix[i];
      const std::vector<Access> &v_accesses =
          a.variable_accesses[variable_index];
      if (v_accesses.size() > 1 &&
          v_accesses[1].access_type != kWriteAccess) {
        all_variables_ok = false;  // first access after zeroing was not a write
        break;
      }
      if (v_accesses.size() == 1 &&
          accesses.is_output) {
        // the only command that touches this variable is the allocation, and it
        // is an output variable.  (this is unusual, but can happen e.g. if it's
        // a derivative, but due to min_deriv_time and max_deriv_time it ends up
        // always being zero.
        all_variables_ok = false;
        break;
      }
    }
    if (all_variables_ok) {
      // Here is where the change actually happens.
      // Remove the zeroing command.
      command->command_type = kNoOperation;
    }
  }
}

/*
  This function is called from RemoveUnnecessaryAllocation.  The input is two
  sorted, unique lists, of (deallocation-commands, allocation-commands)
  e.g. (d1, d2, d3.. ), (a1, a2, a3..); and to the output is *appended* a list
  of pairs (d, a).  Each output pair must satisfy the property that d < a, and
  no member of the input lists may appear more than once in the output pairs
  (although it's OK for input a and d values not to appear in any output pairs).

  The goal of the implementation is to output as many pairs as possible, and
  secondarily for the pairs to be as close as possible to each other (to avoid
  wasting too much memory).  I'm not sure if this implementation achieves that.
*/
static void ComputeCommandPairs(
    const std::pair<std::vector<int32>, std::vector<int32> > &lists,
    std::vector<std::pair<int32,int32> > *pairs) {
  std::vector<int32> d_list = lists.first;

  std::set<int32> a_set;
  CopyVectorToSet(lists.second, &a_set);

  std::vector<int32>::reverse_iterator iter = d_list.rbegin(),
      end = d_list.rend();

  // from the latest to the earliest deallocation command...
  for (; iter != end; ++iter) {
    int32 d = *iter;
    std::set<int32>::iterator a_iter = a_set.upper_bound(d);
    // a_iter is an iterator to the first element a of the set 'a_set' such
    // that a > d, or a_set.end() if no such element exists.
    if (a_iter == a_set.end())
      continue;  // we will output no pair for this d.
    int32 a = *a_iter;
    KALDI_PARANOID_ASSERT(a > d);  // or code error
    a_set.erase(a_iter);  // remove this a from 'a_set' so it doesn't get used
                          // twice
    pairs->push_back(std::pair<int32,int32>(d, a));
  }
}

void RemoveUnnecessaryAllocation(const Nnet &nnet,
                                 NnetComputation *computation) {
  // For each size of matrix and stride-type, represented as a pair<int32,int32>
  // (the num-rows, and the num-cols * (stride-type == kDefaultStride ? 1 : -1), we
  // accumulate a list of indexes of deallocation commands that
  // are for that size, and a list of indexes of allocation commands
  // for that size.
  // For each distinct matrix size, we then call ComputeCommandPairs on those
  // two lists, to get pairs of (deallocation, allocation) command-indexes that
  // we can optimize out to a single command.

  // The map is from a (num-rows,num-columns) to two lists, of
  // (deallocation-commands, allocation-commands).  The order may seem
  // backwards, but that's the order of the pairs we are looking for.
  typedef unordered_map<std::pair<int32,int32>,
      std::pair<std::vector<int32>,std::vector<int32> >,
      PairHasher<int32> > MapType;
  MapType pair_map;
  int32 num_commands = computation->commands.size();
  for (int32 command_index = 0; command_index < num_commands; command_index++) {
    NnetComputation::Command &command = computation->commands[command_index];
    if (command.command_type == kAllocMatrix ||
        command.command_type == kDeallocMatrix) {
      int32 s = command.arg1, m = computation->submatrices[s].matrix_index,
          num_rows = computation->matrices[m].num_rows,
          num_cols = computation->matrices[m].num_cols,
          num_cols_mod = num_cols * (
              computation->matrices[m].stride_type == kDefaultStride ? 1 : -1);
      std::pair<int32,int32> p(num_rows, num_cols_mod);
      std::pair<std::vector<int32>,std::vector<int32> > &lists = pair_map[p];
      if (command.command_type == kDeallocMatrix)
        lists.first.push_back(command_index);
      else
        lists.second.push_back(command_index);
    }
  }

  MapType::const_iterator iter = pair_map.begin(), end = pair_map.end();
  std::vector<std::pair<int32,int32> > command_pairs;
  for (; iter != end; ++iter)
    ComputeCommandPairs(iter->second, &command_pairs);

  for (size_t i = 0; i < command_pairs.size(); i++) {
    int32 dealloc_index = command_pairs[i].first,
        alloc_index = command_pairs[i].second;
    NnetComputation::Command
        &dealloc_command = computation->commands[dealloc_index],
        &alloc_command = computation->commands[alloc_index];
    KALDI_ASSERT(dealloc_command.command_type ==
                 kDeallocMatrix);
    KALDI_ASSERT(alloc_command.command_type ==
                 kAllocMatrix);
    // remove the deallocation command.
    dealloc_command.command_type =  kNoOperation;
    alloc_command.arg2 = dealloc_command.arg1;
    alloc_command.command_type = kSwapMatrix;
  }
  RemoveNoOps(computation);
  FixGotoLabel(computation);
}


void VariableMergingOptimization(const NnetOptimizeOptions &config,
                                 const Nnet &nnet,
                                 NnetComputation *computation) {
  bool changed = true;
  while (changed) {
    changed = false;
    VariableMergingOptimizer opt(config, nnet, computation);
    if (opt.MergeVariables())
      changed = true;
  }
}


void ConvertAdditionToAssignment(const Nnet &nnet,
                                 NnetComputation *computation) {
  Analyzer analyzer;
  analyzer.Init(nnet, *computation);
  ComputationAnalysis analysis(*computation, analyzer);
  int32 num_commands = computation->commands.size();
  for (int32 command = 0; command < num_commands; command++) {
    NnetComputation::Command &c = computation->commands[command];
    switch (c.command_type) {
      case kMatrixAdd: case kAddRows: case kAddRowsMulti:
      case kAddToRowsMulti: {
        const std::vector<int32> &submatrices_written =
            analyzer.command_attributes[command].submatrices_written;
        KALDI_ASSERT(!submatrices_written.empty());
        std::vector<int32>::const_iterator iter = submatrices_written.begin(),
            end = submatrices_written.end();
        bool can_convert = true;
        for (; iter != end; ++iter) {
          int32 submatrix_written = *iter;
          int32 first_access_command = analysis.FirstNontrivialAccess(
              submatrix_written);
          // first_access_command is first command other than zeroing and
          // allocation that accesses this submatrix.  It can be assumed to be a
          // write command, since it makes no sense to read a variable before
          // it's written to.  If it's before this command then we need to add
          // rather than copy; we can't do the conversion to a copy command.
          if (first_access_command != command) {
            can_convert = false;
            break;
          }
        }
        if (can_convert) {  // convert to a copy command.
          switch (c.command_type) {
            case kMatrixAdd: c.command_type = kMatrixCopy;
              break;
            case kAddRows: c.command_type = kCopyRows;
               break;
            case kAddRowsMulti: c.command_type = kCopyRowsMulti;
              break;
            // note: kCopyToRowsMulti does not currently support alpha != 1.0.
            case kAddToRowsMulti: if (c.alpha == 1.0) c.command_type = kCopyToRowsMulti;
              break;
            default: KALDI_ERR << "Unexpected command type.";
          }
        }
        break;
      }
      default:
        break;
    }
  }
}


int32 MaxOutputTimeInRequest(const ComputationRequest &request) {
  int32 ans = std::numeric_limits<int32>::min();
  for (size_t i = 0; i < request.outputs.size(); i++) {
    const std::vector<Index> &indexes (request.outputs[i].indexes);
    std::vector<Index>::const_iterator iter = indexes.begin(),
        end = indexes.end();
    for (; iter != end; ++iter)
      if (iter->t > ans)
        ans = iter->t;
  }
  if (ans == std::numeric_limits<int32>::min()) {
    KALDI_ERR << "Failed to find any output indexes in computation request.";
  }
  return ans;
}


void Optimize(const NnetOptimizeOptions &config,
              const Nnet &nnet,
              int32 max_output_time_in_request,
              NnetComputation *computation) {
  if (GetVerboseLevel() >= 3) {
    CheckComputation(nnet, *computation, true);
    KALDI_LOG << "Before optimization, max memory use (bytes) = "
              << GetMaxMemoryUse(*computation);
  }

  { // Call LimitDerivativeTimes(); it's important that this
    // should come before other optimizations (search for "insist" in
    // nnet-optimize-utils.cc for the reasons).
    // this will do nothing unless --min-deriv-time or --max-deriv-time
    // or --max-deriv-time-relative was set.
    int32 max_deriv_time = config.max_deriv_time;
    if (config.max_deriv_time_relative != std::numeric_limits<int32>::max())
      max_deriv_time = config.max_deriv_time_relative +
          max_output_time_in_request;
    if (config.min_deriv_time != std::numeric_limits<int32>::min() ||
        max_deriv_time != std::numeric_limits<int32>::max())
      LimitDerivativeTimes(nnet, config.min_deriv_time,
                           max_deriv_time, computation);
  }

  if (GetVerboseLevel() >= 3)
    CheckComputation(nnet, *computation, true);

  if (config.optimize && config.consolidate_model_update) {
    ConsolidateModelUpdate(nnet, computation);

    if (GetVerboseLevel() >= 3)
      CheckComputation(nnet, *computation, true);
  }

  if (config.optimize && config.convert_addition) {
    ConvertAdditionToAssignment(nnet, computation);
    if (GetVerboseLevel() >= 3)
      CheckComputation(nnet, *computation, true);
  }


  if (config.optimize &&  (config.snip_row_ops || config.optimize_row_ops ||
                           config.split_row_ops)) {
    bool must_renumber = false;
    if (config.snip_row_ops && SnipRowOps(computation))
      must_renumber = true;
    if (config.split_row_ops && SplitRowOps(computation))
      must_renumber = true;
    if (config.optimize_row_ops && ReplaceRowWithMatrixOps(computation))
      must_renumber = true;

    if (must_renumber) {
      RenumberComputation(computation);
      if (GetVerboseLevel() >= 3)
        CheckComputation(nnet, *computation, false);
    }
  }

  if (config.optimize && config.extend_matrices &&
      !config.optimize_looped_computation) {
    ExtendMatrices(computation);
    if (GetVerboseLevel() >= 3)
      CheckComputation(nnet, *computation, false);
  }


  if (config.optimize &&
      (config.remove_assignments || config.backprop_in_place ||
       config.propagate_in_place)) {
    VariableMergingOptimization(config, nnet, computation);
    if (GetVerboseLevel() >= 3)
      CheckComputation(nnet, *computation, false);
  }

  if (config.optimize && config.initialize_undefined) {
    RemoveUnnecessaryZeroing(nnet, computation);
    if (GetVerboseLevel() >= 3)
      CheckComputation(nnet, *computation, false);
  }


  if ((config.optimize && config.move_sizing_commands) ||
      config.optimize_looped_computation) {
    MoveSizingCommands(nnet, computation);
    if (GetVerboseLevel() >= 3)
      CheckComputation(nnet, *computation, false);
  }

  // the looped computation optimization has to go before
  // 'RemoveUnnecessaryAllocation()'.  We don't gate this by 'config.optimize'
  // because it's necessary for looped computation to run.
  if (config.optimize_looped_computation) {
    OptimizeLoopedComputation(nnet, computation);
    if (GetVerboseLevel() >= 3)
      CheckComputation(nnet, *computation, false);
  }

  if (config.optimize && config.allocate_from_other &&
      !config.optimize_looped_computation) {
    // Don't do this if it's an looped computation because we're not sure if it
    // would be correct in that case, as written.  In any case the performance
    // benefit is tiny.
    RemoveUnnecessaryAllocation(nnet, computation);
    if (GetVerboseLevel() >= 3)
      CheckComputation(nnet, *computation, false);
  }

  // The following is not configurable because it is necessary for
  // the computation to run correctly (we do it after compilation too,
  // but the operations may have been put out of order by
  // other optimizations.)
  ConsolidateIoOperations(nnet, computation);

  if (config.optimize_looped_computation)
    FixGotoLabel(computation);


  if (config.memory_compression_level > 0 &&
      !config.optimize_looped_computation) {
    OptimizeMemoryCompression(nnet, config.memory_compression_level,
                              computation);
    if (GetVerboseLevel() >= 3)
      CheckComputation(nnet, *computation, false);
  }

  if (GetVerboseLevel() >= 3) {
    CheckComputation(nnet, *computation, false);
    KALDI_LOG << "After optimization, max memory use (bytes) = "
              << GetMaxMemoryUse(*computation);
  }
}


CachingOptimizingCompiler::CachingOptimizingCompiler(
    const Nnet &nnet,
    const CachingOptimizingCompilerOptions config):
    nnet_(nnet), config_(config),
    seconds_taken_total_(0.0), seconds_taken_compile_(0.0),
    seconds_taken_optimize_(0.0), seconds_taken_expand_(0.0),
    seconds_taken_check_(0.0), seconds_taken_indexes_(0.0),
    seconds_taken_io_(0.0), cache_(config.cache_capacity),
    nnet_left_context_(-1), nnet_right_context_(-1) { }

CachingOptimizingCompiler::CachingOptimizingCompiler(
    const Nnet &nnet,
    const NnetOptimizeOptions &opt_config,
    const CachingOptimizingCompilerOptions config):
    nnet_(nnet), config_(config), opt_config_(opt_config),
    seconds_taken_total_(0.0), seconds_taken_compile_(0.0),
    seconds_taken_optimize_(0.0), seconds_taken_expand_(0.0),
    seconds_taken_check_(0.0), seconds_taken_indexes_(0.0),
    seconds_taken_io_(0.0), cache_(config.cache_capacity),
    nnet_left_context_(-1), nnet_right_context_(-1) { }

void CachingOptimizingCompiler::GetSimpleNnetContext(
    int32 *nnet_left_context, int32 *nnet_right_context) {
  if (nnet_left_context_ == -1) {
    ComputeSimpleNnetContext(nnet_, &nnet_left_context_,
                             &nnet_right_context_);
  }
  *nnet_left_context = nnet_left_context_;
  *nnet_right_context = nnet_right_context_;
}

void CachingOptimizingCompiler::ReadCache(std::istream &is, bool binary) {
  {
    Timer timer;
    NnetOptimizeOptions opt_config_cached;
    opt_config_cached.Read(is, binary);
    // we won't read cached computations if any optimize option has been changed.
    if (!(opt_config_ == opt_config_cached))
      return;
    cache_.Read(is, binary);
    seconds_taken_io_ += timer.Elapsed();
  }
  if (GetVerboseLevel() >= 2) {
    Timer timer;
    cache_.Check(nnet_);
    seconds_taken_check_ += timer.Elapsed();
    // we consider the check time part of the total time...  this is very
    // arbitrary but it only affects printed times-taken.
    seconds_taken_total_ += timer.Elapsed();
  }

}

void CachingOptimizingCompiler::WriteCache(std::ostream &os, bool binary) {
  Timer timer;
  opt_config_.Write(os, binary);
  cache_.Write(os, binary);
  seconds_taken_io_ += timer.Elapsed();
}

CachingOptimizingCompiler::~CachingOptimizingCompiler() {
  if (seconds_taken_total_ > 0.0 || seconds_taken_io_ > 0.0) {
    std::ostringstream os;
    double seconds_taken_misc = seconds_taken_total_ - seconds_taken_compile_
        - seconds_taken_optimize_ - seconds_taken_expand_
        - seconds_taken_check_ - seconds_taken_indexes_;
    os << std::setprecision(3) << seconds_taken_total_
       << " seconds taken in nnet3 compilation total (breakdown: "
       << seconds_taken_compile_ << " compilation, "
       << seconds_taken_optimize_ << " optimization, "
       << seconds_taken_expand_ << " shortcut expansion, "
       << seconds_taken_check_ << " checking, "
       << seconds_taken_indexes_ << " computing indexes, "
       << seconds_taken_misc << " misc.) + "
       << seconds_taken_io_ << " I/O.";
    KALDI_LOG << os.str();
    // note: the leftover amount is misc things like hashing and == comparisons on
    // computation-requests, and calling RequestIsDecomposable().
  }
}

std::shared_ptr<const NnetComputation> CachingOptimizingCompiler::Compile(
    const ComputationRequest  &in_request) {
  Timer timer;
  std::shared_ptr<const NnetComputation>  ans = CompileInternal(in_request);
  seconds_taken_total_ += timer.Elapsed();
  return ans;
}

std::shared_ptr<const NnetComputation> CachingOptimizingCompiler::CompileInternal(
    const ComputationRequest  &request) {
  std::shared_ptr<const NnetComputation> ans = cache_.Find(request);
  if (ans != NULL) {
    return ans;
  } else {
    const NnetComputation *computation = NULL;
    if (config_.use_shortcut)
      computation = CompileViaShortcut(request);
    if (computation == NULL)
      computation = CompileNoShortcut(request);
    KALDI_ASSERT(computation != NULL);
    return cache_.Insert(request, computation);
  }
}


const NnetComputation *CachingOptimizingCompiler::CompileNoShortcut(
    const ComputationRequest &request) {

  Compiler compiler(request, nnet_);
  // note: 'opts' only contains 'output_debug_info', which is true by default.
  // There may be situations where we'd prefer not to keep it, for speed.
  CompilerOptions opts;
  NnetComputation *computation = new NnetComputation;

  {
    Timer timer;
    compiler.CreateComputation(opts, computation);
    seconds_taken_compile_ += timer.Elapsed();
  }

  int32 verbose_cutoff = 4;
  if (GetVerboseLevel() >= verbose_cutoff) {
    std::ostringstream os1;
    request.Print(os1);
    KALDI_LOG << "Computation request is " << os1.str();
    std::ostringstream os2;
    computation->Print(os2, nnet_);
    KALDI_LOG << "Generated computation is: " << os2.str();
  }

  { // some checking.  Note: there may come a time when we might
    // prefer to disable this checking.
    Timer timer;
    CheckComputationOptions check_config;
    // we can do the rewrite check since it's before optimization.
    check_config.check_rewrite = true;
    ComputationChecker checker(check_config, nnet_, *computation);
    checker.Check();
    seconds_taken_check_ += timer.Elapsed();
  }

  {
    Timer timer;
    Optimize(opt_config_, nnet_,
             MaxOutputTimeInRequest(request),
             computation);
    seconds_taken_optimize_ += timer.Elapsed();
  }

  if (GetVerboseLevel() >= verbose_cutoff) {
    std::ostringstream os;
    computation->Print(os, nnet_);
    KALDI_LOG << "Optimized computation is: " << os.str();
  }

  {  // check the computation again.
    Timer timer;
    CheckComputationOptions check_config;
    ComputationChecker checker(check_config, nnet_, *computation);
    checker.Check();
    seconds_taken_check_ += timer.Elapsed();
  }

  {
    Timer timer;
    computation->ComputeCudaIndexes();
    seconds_taken_indexes_ += timer.Elapsed();
  }
  return computation;
}


const NnetComputation *CachingOptimizingCompiler::CompileViaShortcut(
    const ComputationRequest &request) {
  int32 num_n_values;
  ComputationRequest mini_request;
  if (!RequestIsDecomposable(request, &mini_request, &num_n_values))
    return NULL;

  // By invoking CompileInternal() on the mini request, we go through the same
  // caching process as for any externally requested computation.
  std::shared_ptr<const NnetComputation> mini_computation =
      CompileInternal(mini_request);

  // note: by default we always create debug_info, even in regular compilation.
  // (e.g. it defaults to true in CompilerOptions).  If it really seems to be a
  // significant overhead, we can revisit this at some point in future.
  bool need_debug_info = true;


  NnetComputation *ans = new NnetComputation();

  {
    Timer timer;
    ExpandComputation(nnet_, request.misc_info, *mini_computation,
                      need_debug_info, num_n_values, ans);
    seconds_taken_expand_ += timer.Elapsed();
  }
  if (GetVerboseLevel() >= 3) {
    CheckComputation(nnet_, *ans, false);
  }

  {
    Timer timer;
    ans->ComputeCudaIndexes();
    seconds_taken_indexes_ += timer.Elapsed();
  }
  return ans;
}



/// Split the computation up into segments bounded by kNoOperationMarker.  For
/// each segment, a pair of command-indexes (start, end) is output to the vector
/// 'segments', so the commands in the segment (not including
/// kNoOperationMarker) are numbered from start ... end - 1.
static void SplitComputationIntoSegments(
    const NnetComputation &computation,
    std::vector<std::pair<int32, int32> > *segments) {

  int32 num_commands = computation.commands.size();
  segments->clear();
  int32 cur_start = 0;
  for (int32 c = 0; c < num_commands; c++) {
    if (computation.commands[c].command_type == kNoOperationMarker) {
      segments->push_back(std::pair<int32, int32>(cur_start, c));
      cur_start = c + 1;
    }
  }
  segments->push_back(std::pair<int32, int32>(cur_start, num_commands));
}


void ConsolidateIoOperations(const Nnet &nnet,
                             NnetComputation *computation) {
  // These segments, represented as (start-index, end-index),
  // are segments of the computation separated by kNoOperationMarker.
  std::vector<std::pair<int32, int32> > segments;
  SplitComputationIntoSegments(*computation, &segments);

  int32 num_commands = computation->commands.size();
  std::vector<NnetComputation::Command> reordered_commands(num_commands);
  // put kNoOperationMarker between all segments in the reordered commands.
  for (size_t s = 0; s + 1 < segments.size(); s++)
    reordered_commands[segments[s].second].command_type = kNoOperationMarker;

  // for each segment we'll divide the commands up into those that must appear
  // at the left of the segment (kAcceptInput for inputs and output-derivs), those
  // that must appear in the middle (most commands), those that must appear
  // on the right (kProvideOutput for output nodes and input derivatives).
  std::vector<int32> left_commands, middle_commands, right_commands;

  for (size_t s = 0; s < segments.size(); s++) {
    int32 segment_start = segments[s].first,
        segment_end = segments[s].second;
    left_commands.clear();
    middle_commands.clear();
    right_commands.clear();
    for (int32 c = segment_start; c < segment_end; c++) {
      if (computation->commands[c].command_type == kProvideOutput) {
        right_commands.push_back(c);
      } else if (computation->commands[c].command_type == kAcceptInput) {
        left_commands.push_back(c);
      } else {
        middle_commands.push_back(c);
      }
    }
    std::vector<int32>::const_iterator iter = left_commands.begin(),
        end = left_commands.end();
    int32 c = segment_start;
    for (; iter != end; ++iter, ++c)
      reordered_commands[c] = computation->commands[*iter];
    iter = middle_commands.begin();
    end = middle_commands.end();
    for (; iter != end; ++iter, ++c)
      reordered_commands[c] = computation->commands[*iter];
    iter = right_commands.begin();
    end = right_commands.end();
    for (; iter != end; ++iter, ++c)
      reordered_commands[c] = computation->commands[*iter];
    KALDI_ASSERT(c == segment_end);
  }
  computation->commands.swap(reordered_commands);
}




} // namespace nnet3
} // namespace kaldi