Blame view
src/nnet3/nnet-utils.cc
96.7 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 |
// nnet3/nnet-utils.cc // Copyright 2015 Johns Hopkins University (author: Daniel Povey) // 2016 Daniel Galvez // // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <iomanip> #include "nnet3/nnet-utils.h" #include "nnet3/nnet-graph.h" #include "nnet3/nnet-simple-component.h" #include "nnet3/nnet-normalize-component.h" #include "nnet3/nnet-general-component.h" #include "nnet3/nnet-convolutional-component.h" #include "nnet3/nnet-parse.h" #include "nnet3/nnet-computation-graph.h" #include "nnet3/nnet-diagnostics.h" namespace kaldi { namespace nnet3 { int32 NumOutputNodes(const Nnet &nnet) { int32 ans = 0; for (int32 n = 0; n < nnet.NumNodes(); n++) if (nnet.IsOutputNode(n)) ans++; return ans; } int32 NumInputNodes(const Nnet &nnet) { int32 ans = 0; for (int32 n = 0; n < nnet.NumNodes(); n++) if (nnet.IsInputNode(n)) ans++; return ans; } bool IsSimpleNnet(const Nnet &nnet) { // check that we have an output node and called "output". if (nnet.GetNodeIndex("output") == -1 || !nnet.IsOutputNode(nnet.GetNodeIndex("output"))) return false; // check that there is an input node named "input". if (nnet.GetNodeIndex("input") == -1 || !nnet.IsInputNode(nnet.GetNodeIndex("input"))) return false; // if there was just one input, then it was named // "input" and everything checks out. if (NumInputNodes(nnet) == 1) return true; // Otherwise, there should be input node with name "input" and one // should be called "ivector". return nnet.GetNodeIndex("ivector") != -1 && nnet.IsInputNode(nnet.GetNodeIndex("ivector")); } void EvaluateComputationRequest( const Nnet &nnet, const ComputationRequest &request, std::vector<std::vector<bool> > *is_computable) { ComputationGraph graph; ComputationGraphBuilder builder(nnet, &graph); builder.Compute(request); builder.GetComputableInfo(is_computable); if (GetVerboseLevel() >= 4) { std::ostringstream graph_pretty; graph.Print(graph_pretty, nnet.GetNodeNames()); KALDI_VLOG(4) << "Graph is " << graph_pretty.str(); } } // This non-exported function is used in ComputeSimpleNnetContext // to compute the left and right context of the nnet for a particular // window size and shift-length. // It returns false if no outputs were computable, meaning the left and // right context could not be computed. (Normally this means the window // size is too small). static bool ComputeSimpleNnetContextForShift( const Nnet &nnet, int32 input_start, int32 window_size, int32 *left_context, int32 *right_context) { int32 input_end = input_start + window_size; IoSpecification input; input.name = "input"; IoSpecification output; output.name = "output"; IoSpecification ivector; // we might or might not use this. ivector.name = "ivector"; int32 n = rand() % 10; // in the IoSpecification for now we we will request all the same indexes at // output that we requested at input. for (int32 t = input_start; t < input_end; t++) { input.indexes.push_back(Index(n, t)); output.indexes.push_back(Index(n, t)); } // most networks will just require the ivector at time t = 0, // but this might not always be the case, and some might use rounding // descriptors with the iVector which might require it at an earlier // frame than the regular input, so we provide the iVector in as wide a range // as it might possibly be needed. for (int32 t = input_start - nnet.Modulus(); t < input_end; t++) { ivector.indexes.push_back(Index(n, t)); } ComputationRequest request; request.inputs.push_back(input); request.outputs.push_back(output); if (nnet.GetNodeIndex("ivector") != -1) request.inputs.push_back(ivector); std::vector<std::vector<bool> > computable; EvaluateComputationRequest(nnet, request, &computable); KALDI_ASSERT(computable.size() == 1); std::vector<bool> &output_ok = computable[0]; std::vector<bool>::iterator iter = std::find(output_ok.begin(), output_ok.end(), true); int32 first_ok = iter - output_ok.begin(); int32 first_not_ok = std::find(iter, output_ok.end(), false) - output_ok.begin(); if (first_ok == window_size || first_not_ok <= first_ok) return false; *left_context = first_ok; *right_context = window_size - first_not_ok; return true; } void ComputeSimpleNnetContext(const Nnet &nnet, int32 *left_context, int32 *right_context) { KALDI_ASSERT(IsSimpleNnet(nnet)); int32 modulus = nnet.Modulus(); // modulus >= 1 is a number such that the network ought to be // invariant to time shifts (of both the input and output) that // are a multiple of this number. We need to test all shifts modulo // this number in case the left and right context vary at all within // this range. std::vector<int32> left_contexts(modulus + 1); std::vector<int32> right_contexts(modulus + 1); // window_size is a number which needs to be greater than the total context // of the nnet, else we won't be able to work out the context. Large window // size will make this code slow, so we start off with small window size, and // if it isn't enough, we keep doubling it up to a maximum. int32 window_size = 40, max_window_size = 800; while (window_size < max_window_size) { // by going "<= modulus" instead of "< modulus" we do one more computation // than we really need; it becomes a sanity check. int32 input_start; for (input_start = 0; input_start <= modulus; input_start++) { if (!ComputeSimpleNnetContextForShift(nnet, input_start, window_size, &(left_contexts[input_start]), &(right_contexts[input_start]))) break; } if (input_start <= modulus) { // We broke from the loop over 'input_start', which means there was // a failure in ComputeSimpleNnextContextForShift-- we assume at // this point that it was because window_size was too small. window_size *= 2; continue; } KALDI_ASSERT(left_contexts[0] == left_contexts[modulus] && "nnet does not have the properties we expect."); KALDI_ASSERT(right_contexts[0] == right_contexts[modulus] && "nnet does not have the properties we expect."); *left_context = *std::max_element(left_contexts.begin(), left_contexts.end()); *right_context = *std::max_element(right_contexts.begin(), right_contexts.end()); // Success. return; } KALDI_ERR << "Failure in ComputeSimpleNnetContext (perhaps not a simple nnet?)"; } void PerturbParams(BaseFloat stddev, Nnet *nnet) { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); if (comp->Properties() & kUpdatableComponent) { UpdatableComponent *u_comp = dynamic_cast<UpdatableComponent*>(comp); KALDI_ASSERT(u_comp != NULL); u_comp->PerturbParams(stddev); } } } void ComponentDotProducts(const Nnet &nnet1, const Nnet &nnet2, VectorBase<BaseFloat> *dot_prod) { KALDI_ASSERT(nnet1.NumComponents() == nnet2.NumComponents()); int32 updatable_c = 0; for (int32 c = 0; c < nnet1.NumComponents(); c++) { const Component *comp1 = nnet1.GetComponent(c), *comp2 = nnet2.GetComponent(c); if (comp1->Properties() & kUpdatableComponent) { const UpdatableComponent *u_comp1 = dynamic_cast<const UpdatableComponent*>(comp1), *u_comp2 = dynamic_cast<const UpdatableComponent*>(comp2); KALDI_ASSERT(u_comp1 != NULL && u_comp2 != NULL); dot_prod->Data()[updatable_c] = u_comp1->DotProduct(*u_comp2); updatable_c++; } } KALDI_ASSERT(updatable_c == dot_prod->Dim()); } std::string PrintVectorPerUpdatableComponent(const Nnet &nnet, const VectorBase<BaseFloat> &vec) { std::ostringstream os; os << "[ "; KALDI_ASSERT(NumUpdatableComponents(nnet) == vec.Dim()); int32 updatable_c = 0; for (int32 c = 0; c < nnet.NumComponents(); c++) { const Component *comp = nnet.GetComponent(c); if (comp->Properties() & kUpdatableComponent) { const std::string &component_name = nnet.GetComponentName(c); os << component_name << ':' << vec(updatable_c) << ' '; updatable_c++; } } KALDI_ASSERT(updatable_c == vec.Dim()); os << ']'; return os.str(); } BaseFloat DotProduct(const Nnet &nnet1, const Nnet &nnet2) { KALDI_ASSERT(nnet1.NumComponents() == nnet2.NumComponents()); BaseFloat ans = 0.0; for (int32 c = 0; c < nnet1.NumComponents(); c++) { const Component *comp1 = nnet1.GetComponent(c), *comp2 = nnet2.GetComponent(c); if (comp1->Properties() & kUpdatableComponent) { const UpdatableComponent *u_comp1 = dynamic_cast<const UpdatableComponent*>(comp1), *u_comp2 = dynamic_cast<const UpdatableComponent*>(comp2); KALDI_ASSERT(u_comp1 != NULL && u_comp2 != NULL); ans += u_comp1->DotProduct(*u_comp2); } } return ans; } void ZeroComponentStats(Nnet *nnet) { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); comp->ZeroStats(); // for some components, this won't do anything. } } void SetLearningRate(BaseFloat learning_rate, Nnet *nnet) { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); if (comp->Properties() & kUpdatableComponent) { // For now all updatable components inherit from class UpdatableComponent. // If that changes in future, we will change this code. UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(comp); if (uc == NULL) KALDI_ERR << "Updatable component does not inherit from class " "UpdatableComponent; change this code."; uc->SetUnderlyingLearningRate(learning_rate); } } } void SetNnetAsGradient(Nnet *nnet) { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); if (comp->Properties() & kUpdatableComponent) { UpdatableComponent *u_comp = dynamic_cast<UpdatableComponent*>(comp); KALDI_ASSERT(u_comp != NULL); u_comp->SetAsGradient(); } } } void ScaleNnet(BaseFloat scale, Nnet *nnet) { if (scale == 1.0) return; else { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); comp->Scale(scale); } } } void AddNnetComponents(const Nnet &src, const Vector<BaseFloat> &alphas, BaseFloat scale, Nnet *dest) { if (src.NumComponents() != dest->NumComponents()) KALDI_ERR << "Trying to add incompatible nnets."; int32 i = 0; for (int32 c = 0; c < src.NumComponents(); c++) { const Component *src_comp = src.GetComponent(c); Component *dest_comp = dest->GetComponent(c); if (src_comp->Properties() & kUpdatableComponent) { // For now all updatable components inherit from class UpdatableComponent. // If that changes in future, we will change this code. const UpdatableComponent *src_uc = dynamic_cast<const UpdatableComponent*>(src_comp); UpdatableComponent *dest_uc = dynamic_cast<UpdatableComponent*>(dest_comp); if (src_uc == NULL || dest_uc == NULL) KALDI_ERR << "Updatable component does not inherit from class " "UpdatableComponent; change this code."; KALDI_ASSERT(i < alphas.Dim()); dest_uc->Add(alphas(i++), *src_uc); } else { // add stored stats dest_comp->Add(scale, *src_comp); } } KALDI_ASSERT(i == alphas.Dim()); } void AddNnet(const Nnet &src, BaseFloat alpha, Nnet *dest) { if (src.NumComponents() != dest->NumComponents()) KALDI_ERR << "Trying to add incompatible nnets."; for (int32 c = 0; c < src.NumComponents(); c++) { const Component *src_comp = src.GetComponent(c); Component *dest_comp = dest->GetComponent(c); dest_comp->Add(alpha, *src_comp); } } int32 NumParameters(const Nnet &src) { int32 ans = 0; for (int32 c = 0; c < src.NumComponents(); c++) { const Component *comp = src.GetComponent(c); if (comp->Properties() & kUpdatableComponent) { // For now all updatable components inherit from class UpdatableComponent. // If that changes in future, we will change this code. const UpdatableComponent *uc = dynamic_cast<const UpdatableComponent*>(comp); if (uc == NULL) KALDI_ERR << "Updatable component does not inherit from class " "UpdatableComponent; change this code."; ans += uc->NumParameters(); } } return ans; } void VectorizeNnet(const Nnet &src, VectorBase<BaseFloat> *parameters) { KALDI_ASSERT(parameters->Dim() == NumParameters(src)); int32 dim_offset = 0; for (int32 c = 0; c < src.NumComponents(); c++) { const Component *comp = src.GetComponent(c); if (comp->Properties() & kUpdatableComponent) { // For now all updatable components inherit from class UpdatableComponent. // If that changes in future, we will change this code. const UpdatableComponent *uc = dynamic_cast<const UpdatableComponent*>(comp); if (uc == NULL) KALDI_ERR << "Updatable component does not inherit from class " "UpdatableComponent; change this code."; int32 this_dim = uc->NumParameters(); SubVector<BaseFloat> this_part(*parameters, dim_offset, this_dim); uc->Vectorize(&this_part); dim_offset += this_dim; } } } void UnVectorizeNnet(const VectorBase<BaseFloat> ¶meters, Nnet *dest) { KALDI_ASSERT(parameters.Dim() == NumParameters(*dest)); int32 dim_offset = 0; for (int32 c = 0; c < dest->NumComponents(); c++) { Component *comp = dest->GetComponent(c); if (comp->Properties() & kUpdatableComponent) { // For now all updatable components inherit from class UpdatableComponent. // If that changes in future, we will change this code. UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(comp); if (uc == NULL) KALDI_ERR << "Updatable component does not inherit from class " "UpdatableComponent; change this code."; int32 this_dim = uc->NumParameters(); const SubVector<BaseFloat> this_part(parameters, dim_offset, this_dim); uc->UnVectorize(this_part); dim_offset += this_dim; } } } int32 NumUpdatableComponents(const Nnet &dest) { int32 ans = 0; for (int32 c = 0; c < dest.NumComponents(); c++) { const Component *comp = dest.GetComponent(c); if (comp->Properties() & kUpdatableComponent) ans++; } return ans; } void FreezeNaturalGradient(bool freeze, Nnet *nnet) { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); if (comp->Properties() & kUpdatableComponent) { // For now all updatable components inherit from class UpdatableComponent. // If that changes in future, we will change this code. UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(comp); if (uc == NULL) KALDI_ERR << "Updatable component does not inherit from class " "UpdatableComponent; change this code."; uc->FreezeNaturalGradient(freeze); } } } void ConvertRepeatedToBlockAffine(CompositeComponent *c_component) { for(int32 i = 0; i < c_component->NumComponents(); i++) { const Component *c = c_component->GetComponent(i); KALDI_ASSERT(c->Type() != "CompositeComponent" && "Nesting CompositeComponent within CompositeComponent is not allowed. " "(We may change this as more complicated components are introduced.)"); if(c->Type() == "RepeatedAffineComponent" || c->Type() == "NaturalGradientRepeatedAffineComponent") { // N.B.: NaturalGradientRepeatedAffineComponent is a subclass of // RepeatedAffineComponent. const RepeatedAffineComponent *rac = dynamic_cast<const RepeatedAffineComponent*>(c); KALDI_ASSERT(rac != NULL); BlockAffineComponent *bac = new BlockAffineComponent(*rac); // following call deletes rac c_component->SetComponent(i, bac); } } } void ConvertRepeatedToBlockAffine(Nnet *nnet) { for(int32 i = 0; i < nnet->NumComponents(); i++) { const Component *const_c = nnet->GetComponent(i); if(const_c->Type() == "RepeatedAffineComponent" || const_c->Type() == "NaturalGradientRepeatedAffineComponent") { // N.B.: NaturalGradientRepeatedAffineComponent is a subclass of // RepeatedAffineComponent. const RepeatedAffineComponent *rac = dynamic_cast<const RepeatedAffineComponent*>(const_c); KALDI_ASSERT(rac != NULL); BlockAffineComponent *bac = new BlockAffineComponent(*rac); // following call deletes rac nnet->SetComponent(i, bac); } else if (const_c->Type() == "CompositeComponent") { // We must modify the composite component, so we use the // non-const GetComponent() call here. Component *c = nnet->GetComponent(i); CompositeComponent *cc = dynamic_cast<CompositeComponent*>(c); KALDI_ASSERT(cc != NULL); ConvertRepeatedToBlockAffine(cc); } } } std::string NnetInfo(const Nnet &nnet) { std::ostringstream ostr; if (IsSimpleNnet(nnet)) { int32 left_context, right_context; // this call will crash if the nnet is not 'simple'. ComputeSimpleNnetContext(nnet, &left_context, &right_context); ostr << "left-context: " << left_context << " "; ostr << "right-context: " << right_context << " "; } ostr << "input-dim: " << nnet.InputDim("input") << " "; ostr << "ivector-dim: " << nnet.InputDim("ivector") << " "; ostr << "output-dim: " << nnet.OutputDim("output") << " "; ostr << "# Nnet info follows. "; ostr << nnet.Info(); return ostr.str(); } void SetDropoutProportion(BaseFloat dropout_proportion, Nnet *nnet) { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); DropoutComponent *dc = dynamic_cast<DropoutComponent*>(comp); if (dc != NULL) dc->SetDropoutProportion(dropout_proportion); DropoutMaskComponent *mc = dynamic_cast<DropoutMaskComponent*>(nnet->GetComponent(c)); if (mc != NULL) mc->SetDropoutProportion(dropout_proportion); GeneralDropoutComponent *gdc = dynamic_cast<GeneralDropoutComponent*>(nnet->GetComponent(c)); if (gdc != NULL) gdc->SetDropoutProportion(dropout_proportion); } } bool HasBatchnorm(const Nnet &nnet) { for (int32 c = 0; c < nnet.NumComponents(); c++) { const Component *comp = nnet.GetComponent(c); if (dynamic_cast<const BatchNormComponent*>(comp) != NULL) return true; } return false; } void ScaleBatchnormStats(BaseFloat batchnorm_stats_scale, Nnet *nnet) { KALDI_ASSERT(batchnorm_stats_scale >= 0.0 && batchnorm_stats_scale <= 1.0); if (batchnorm_stats_scale == 1.0) return; for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); BatchNormComponent *bc = dynamic_cast<BatchNormComponent*>(comp); if (bc != NULL) bc->Scale(batchnorm_stats_scale); } } void RecomputeStats(const std::vector<NnetExample> &egs, Nnet *nnet) { KALDI_LOG << "Recomputing stats on nnet (affects batch-norm)"; ZeroComponentStats(nnet); NnetComputeProbOptions opts; opts.store_component_stats = true; NnetComputeProb prob_computer(opts, nnet); for (size_t i = 0; i < egs.size(); i++) prob_computer.Compute(egs[i]); prob_computer.PrintTotalStats(); KALDI_LOG << "Done recomputing stats."; } void SetBatchnormTestMode(bool test_mode, Nnet *nnet) { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); BatchNormComponent *bc = dynamic_cast<BatchNormComponent*>(comp); if (bc != NULL) bc->SetTestMode(test_mode); } } void SetDropoutTestMode(bool test_mode, Nnet *nnet) { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); RandomComponent *rc = dynamic_cast<RandomComponent*>(comp); if (rc != NULL) rc->SetTestMode(test_mode); } } void ResetGenerators(Nnet *nnet){ for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); RandomComponent *rc = dynamic_cast<RandomComponent*>(comp); if (rc != NULL) rc->ResetGenerator(); } } void FindOrphanComponents(const Nnet &nnet, std::vector<int32> *components) { int32 num_components = nnet.NumComponents(), num_nodes = nnet.NumNodes(); std::vector<bool> is_used(num_components, false); for (int32 i = 0; i < num_nodes; i++) { if (nnet.IsComponentNode(i)) { int32 c = nnet.GetNode(i).u.component_index; KALDI_ASSERT(c >= 0 && c < num_components); is_used[c] = true; } } components->clear(); for (int32 i = 0; i < num_components; i++) if (!is_used[i]) components->push_back(i); } void FindOrphanNodes(const Nnet &nnet, std::vector<int32> *nodes) { std::vector<std::vector<int32> > depend_on_graph, dependency_graph; NnetToDirectedGraph(nnet, &depend_on_graph); // depend_on_graph[i] is a list of all the nodes that depend on i. ComputeGraphTranspose(depend_on_graph, &dependency_graph); // dependency_graph[i] is a list of all the nodes that i depends on, // to be computed. // Find all nodes required to produce the outputs. int32 num_nodes = nnet.NumNodes(); assert(num_nodes == static_cast<int32>(dependency_graph.size())); std::vector<bool> node_is_required(num_nodes, false); std::vector<int32> queue; for (int32 i = 0; i < num_nodes; i++) { if (nnet.IsOutputNode(i)) queue.push_back(i); } while (!queue.empty()) { int32 i = queue.back(); queue.pop_back(); if (!node_is_required[i]) { node_is_required[i] = true; for (size_t j = 0; j < dependency_graph[i].size(); j++) queue.push_back(dependency_graph[i][j]); } } nodes->clear(); for (int32 i = 0; i < num_nodes; i++) { if (!node_is_required[i]) nodes->push_back(i); } } // Parameters used in applying SVD: // 1. Energy threshold : For each Affine weights layer in the original baseline nnet3 model, // we perform SVD based factoring of the weights matrix of the layer, // into a singular values (left diagonal) matrix, and two Eigen matrices. // // SVD : Wx = UEV, U,V are Eigen matrices, and E is the singularity matrix) // // We take the center matrix E, and consider only the Singular values which contribute // to (Energy-threshold) times the total Energy of Singularity parameters. // These Singularity parameters are actually sorted in descending order and lower // values are pruned out until the Total energy (Sum of squares) of the pruned set // of parameters is just above (Energy-threshold * Total init energy). The values which // are pruned away are replaced with 0 in the Singularity matrix // and the Weights matrix after SVD is derived with shrinked dimensions. // // 2. Shrinkage-threshold : If the Shrinkage ratio of the SVD refactored Weights matrix // is higher than Shrinkage-threshold for any of the Tdnn layers, // the SVD process is aborted for that particular Affine weights layer. // // this class implements the internals of the edit directive 'apply-svd'. class SvdApplier { public: SvdApplier(const std::string component_name_pattern, int32 bottleneck_dim, BaseFloat energy_threshold, BaseFloat shrinkage_threshold, Nnet *nnet): nnet_(nnet), bottleneck_dim_(bottleneck_dim), energy_threshold_(energy_threshold), shrinkage_threshold_(shrinkage_threshold), component_name_pattern_(component_name_pattern) { } void ApplySvd() { DecomposeComponents(); if (!modified_component_info_.empty()) ModifyTopology(); KALDI_LOG << "Decomposed " << modified_component_info_.size() << " components with SVD dimension " << bottleneck_dim_; } private: // This function finds components to decompose and decomposes them, adding _a and // _b versions of those components to the nnet while not removing the original // ones. Does not affect the graph topology. void DecomposeComponents() { int32 num_components = nnet_->NumComponents(); modification_index_.resize(num_components, -1); for (int32 c = 0; c < num_components; c++) { Component *component = nnet_->GetComponent(c); std::string component_name = nnet_->GetComponentName(c); if (NameMatchesPattern(component_name.c_str(), component_name_pattern_.c_str())) { AffineComponent *affine = dynamic_cast<AffineComponent*>(component); if (affine == NULL) { KALDI_WARN << "Not decomposing component " << component_name << " as it is not an AffineComponent."; continue; } int32 input_dim = affine->InputDim(), output_dim = affine->OutputDim(); if (input_dim <= bottleneck_dim_ || output_dim <= bottleneck_dim_) { KALDI_WARN << "Not decomposing component " << component_name << " with SVD to rank " << bottleneck_dim_ << " because its dimension is " << input_dim << " -> " << output_dim; continue; } Component *component_a = NULL, *component_b = NULL; if (DecomposeComponent(component_name, *affine, &component_a, &component_b)) { size_t n = modified_component_info_.size(); modification_index_[c] = n; modified_component_info_.resize(n + 1); ModifiedComponentInfo &info = modified_component_info_[n]; info.component_index = c; info.component_name = component_name; info.component_name_a = component_name + "_a"; info.component_name_b = component_name + "_b"; if (nnet_->GetComponentIndex(info.component_name_a) >= 0) KALDI_ERR << "Neural network already has a component named " << info.component_name_a; if (nnet_->GetComponentIndex(info.component_name_b) >= 0) KALDI_ERR << "Neural network already has a component named " << info.component_name_b; info.component_a_index = nnet_->AddComponent(info.component_name_a, component_a); info.component_b_index = nnet_->AddComponent(info.component_name_b, component_b); } } } KALDI_LOG << "Converted " << modified_component_info_.size() << " components to FixedAffineComponent."; } // This function finds the minimum index of // the Descending order sorted [input_vector], // over a range of indices from [lower] to [upper] index, // for which the sum of elements upto the found min. index is greater // than [min_val]. // We add one to this index to return the reduced dimension value. int32 GetReducedDimension(const Vector<BaseFloat> &input_vector, int32 lower, int32 upper, BaseFloat min_val) { BaseFloat sum = 0; int32 i = 0; for (i = lower; i <= upper; i++) { sum = sum + input_vector(i); if (sum >= min_val) break; } return (i+1); } // Here we perform SVD based refactorig of an input Affine component. // After applying SVD , we sort the Singularity values in descending order, // and take the subset of values which contribute to energy_threshold times // total original sum of squared singular values, and then refactor the Affine // component using only these selected singular values, thus making the bottleneck // dim of the refactored Affine layer equal to the no. of Singular values selected. // This function returs false if the shrinkage ratio of the total no. of parameters, // after the above SVD based refactoring, is greater than shrinkage threshold. // bool DecomposeComponent(const std::string &component_name, const AffineComponent &affine, Component **component_a_out, Component **component_b_out) { int32 input_dim = affine.InputDim(), output_dim = affine.OutputDim(); Matrix<BaseFloat> linear_params(affine.LinearParams()); Vector<BaseFloat> bias_params(affine.BiasParams()); int32 middle_dim = std::min<int32>(input_dim, output_dim); // note: 'linear_params' is of dimension output_dim by input_dim. Vector<BaseFloat> s(middle_dim); Matrix<BaseFloat> A(middle_dim, input_dim), B(output_dim, middle_dim); linear_params.Svd(&s, &B, &A); // make sure the singular values are sorted from greatest to least value. SortSvd(&s, &B, &A); Vector<BaseFloat> s2(s.Dim()); s2.AddVec2(1.0, s); BaseFloat s2_sum_orig = s2.Sum(); KALDI_ASSERT(energy_threshold_ < 1); KALDI_ASSERT(shrinkage_threshold_ < 1); if (energy_threshold_ > 0) { BaseFloat min_singular_sum = energy_threshold_ * s2_sum_orig; bottleneck_dim_ = GetReducedDimension(s2, 0, s2.Dim()-1, min_singular_sum); } SubVector<BaseFloat> this_part(s2, 0, bottleneck_dim_); BaseFloat s2_sum_reduced = this_part.Sum(); BaseFloat shrinkage_ratio = static_cast<BaseFloat>(bottleneck_dim_ * (input_dim+output_dim)) / static_cast<BaseFloat>(input_dim * output_dim); if (shrinkage_ratio > shrinkage_threshold_) { KALDI_LOG << "Shrinkage ratio " << shrinkage_ratio << " greater than threshold : " << shrinkage_threshold_ << " Skipping SVD for this layer."; return false; } s.Resize(bottleneck_dim_, kCopyData); A.Resize(bottleneck_dim_, input_dim, kCopyData); B.Resize(output_dim, bottleneck_dim_, kCopyData); KALDI_LOG << "For component " << component_name << " singular value squared sum changed by " << (s2_sum_orig - s2_sum_reduced) << " (from " << s2_sum_orig << " to " << s2_sum_reduced << ")"; KALDI_LOG << "For component " << component_name << " dimension reduced from " << " (" << input_dim << "," << output_dim << ")" << " to [(" << input_dim << "," << bottleneck_dim_ << "), (" << bottleneck_dim_ << "," << output_dim <<")]"; KALDI_LOG << "shrinkage ratio : " << shrinkage_ratio; // we'll divide the singular values equally between the two // parameter matrices. s.ApplyPow(0.5); A.MulRowsVec(s); B.MulColsVec(s); CuMatrix<BaseFloat> A_cuda(A), B_cuda(B); CuVector<BaseFloat> bias_params_cuda(bias_params); LinearComponent *component_a = new LinearComponent(A_cuda); NaturalGradientAffineComponent *component_b = new NaturalGradientAffineComponent(B_cuda, bias_params_cuda); // set the learning rates, max-change, and so on. component_a->SetUpdatableConfigs(affine); component_b->SetUpdatableConfigs(affine); *component_a_out = component_a; *component_b_out = component_b; return true; } // This function modifies the topology of the neural network, splitting // up the components we're modifying into two parts. // Suppose we have something like: // component-node name=some_node component=some_component input= // nodes_to_modify will be a list of component-node indexes that we // need to split into two. These will be nodes like // component-node name=component_node_name component=component_name input=xxx // where 'component_name' is one of the components that we're splitting. // node_names_modified is nnet_->node_names_ except with, for the nodes that // we are splitting in two, "some_node_name" replaced with // "some_node_name_b" (the second of the two split nodes). void ModifyTopology() { std::set<int32> nodes_to_modify; std::vector<std::string> node_names_orig = nnet_->GetNodeNames(), node_names_modified = node_names_orig; // The following loop sets up 'nodes_to_modify' and 'node_names_modified'. for (int32 n = 0; n < nnet_->NumNodes(); n++) { if (nnet_->IsComponentNode(n)) { NetworkNode &node = nnet_->GetNode(n); int32 component_index = node.u.component_index, modification_index = modification_index_[component_index]; if (modification_index >= 0) { // This is a component-node for one of the components that we're // splitting in two. nodes_to_modify.insert(n); std::string node_name = node_names_orig[n], node_name_b = node_name + "_b"; node_names_modified[n] = node_name_b; } } } // config_os is a stream to which we are printing lines that we'll later // read using nnet_->ReadConfig(). std::ostringstream config_os; // The following loop writes to 'config_os'. The the code is modified from // the private function Nnet::GetAsConfigLine(), and from // Nnet::GetConfigLines(). for (int32 n = 0; n < nnet_->NumNodes(); n++) { if (nnet_->IsComponentInputNode(n) || nnet_->IsInputNode(n)) { // component-input descriptor nodes aren't handled separately from their // associated components (we deal with them along with their // component-node); and input-nodes won't be affected so we don't have // to print anything. continue; } const NetworkNode &node = nnet_->GetNode(n); int32 c = node.u.component_index; // 'c' will only be meaningful if the // node is a component-node. std::string node_name = node_names_orig[n]; if (node.node_type == kComponent && modification_index_[c] >= 0) { ModifiedComponentInfo &info = modified_component_info_[ modification_index_[c]]; std::string node_name_a = node_name + "_a", node_name_b = node_name + "_b"; // we print two component-nodes, the "a" an "b". The original // one will later be removed when we call RemoveOrphanNodes(). config_os << "component-node name=" << node_name_a << " component=" << info.component_name_a << " input="; nnet_->GetNode(n-1).descriptor.WriteConfig(config_os, node_names_modified); config_os << " "; config_os << "component-node name=" << node_name_b << " component=" << info.component_name_b << " input=" << node_name_a << " "; } else { // This code is modified from Nnet::GetAsConfigLine(). The key difference // is that we're using node_names_modified, which will replace all the // nodes we're splitting with their "b" versions. switch (node.node_type) { case kDescriptor: // assert that it's an output-descriptor, not one describing the input to // a component-node. KALDI_ASSERT(nnet_->IsOutputNode(n)); config_os << "output-node name=" << node_name << " input="; node.descriptor.WriteConfig(config_os, node_names_modified); config_os << " objective=" << (node.u.objective_type == kLinear ? "linear" : "quadratic"); break; case kComponent: config_os << "component-node name=" << node_name << " component=" << nnet_->GetComponentName(node.u.component_index) << " input="; nnet_->GetNode(n-1).descriptor.WriteConfig(config_os, node_names_modified); break; case kDimRange: config_os << "dim-range-node name=" << node_name << " input-node=" << node_names_modified[node.u.node_index] << " dim-offset=" << node.dim_offset << " dim=" << node.dim; break; default: KALDI_ERR << "Unexpected node type."; } config_os << " "; } } std::istringstream config_is(config_os.str()); nnet_->ReadConfig(config_is); nnet_->RemoveOrphanNodes(); nnet_->RemoveOrphanComponents(); } // modification_index_ is a vector with dimension equal to the number of // components nnet_ had at entry. For each component that we are decomposing, // it contains an index >= 0 into the 'component_info_' vector; for each // component that we are not decomposing, it contains -1. // with SVD. std::vector<int32> modification_index_; struct ModifiedComponentInfo { int32 component_index; // Index of the component we are modifying. std::string component_name; // The original name of the component, // e.g. "some_component". std::string component_name_a; // The original name of the component, plus "_a" // e.g. "some_component_a". std::string component_name_b; // The original name of the component, plus "_b" // e.g. "some_component_b". int32 component_a_index; // component-index of the left part of the // decomposed component, which will have a name // like "some_component_a". int32 component_b_index; // component-index of the right part of the // decomposed component, which will have a name // like "some_component_b". }; std::vector<ModifiedComponentInfo> modified_component_info_; Nnet *nnet_; int32 bottleneck_dim_; BaseFloat energy_threshold_; BaseFloat shrinkage_threshold_; std::string component_name_pattern_; }; /* Does an update that moves M closer to being a (matrix with orthonormal rows) times 'scale'. Note: this will diverge if we start off with singular values too far from 'scale'. This function requires 'scale' to be nonzero. If 'scale' is negative, then it will be set internally to the value that ensures the change in M is orthogonal to M (viewed as a vector). */ void ConstrainOrthonormalInternal(BaseFloat scale, CuMatrixBase<BaseFloat> *M) { KALDI_ASSERT(scale != 0.0); // We'd like to enforce the rows of M to be orthonormal. // define P = M M^T. If P is unit then M has orthonormal rows. // We actually want P to equal scale^2 * I, so that M's rows are // orthogonal with 2-norms equal to 'scale'. // We (notionally) add to the objective function, the value // -alpha times the sum of squared elements of Q = (P - scale^2 * I). int32 rows = M->NumRows(), cols = M->NumCols(); CuMatrix<BaseFloat> M_update(rows, cols); CuMatrix<BaseFloat> P(rows, rows); P.SymAddMat2(1.0, *M, kNoTrans, 0.0); P.CopyLowerToUpper(); // The 'update_speed' is a constant that determines how fast we approach a // matrix with the desired properties (larger -> faster). Larger values will // update faster but will be more prone to instability. 0.125 (1/8) is the // value that gives us the fastest possible convergence when we are already // close to be a semi-orthogonal matrix (in fact, it will lead to quadratic // convergence). // See http://www.danielpovey.com/files/2018_interspeech_tdnnf.pdf // for more details. BaseFloat update_speed = 0.125; bool floating_scale = (scale < 0.0); if (floating_scale) { // This (letting the scale "float") is described in Sec. 2.3 of // http://www.danielpovey.com/files/2018_interspeech_tdnnf.pdf, // where 'scale' here is written 'alpha' in the paper. // // We pick the scale that will give us an update to M that is // orthogonal to M (viewed as a vector): i.e., if we're doing // an update M := M + X, then we want to have tr(M X^T) == 0. // The following formula is what gives us that. // With P = M M^T, our update formula is doing to be: // M := M + (-4 * alpha * (P - scale^2 I) * M). // (The math below explains this update formula; for now, it's // best to view it as an established fact). // So X (the change in M) is -4 * alpha * (P - scale^2 I) * M, // where alpha == update_speed / scale^2. // We want tr(M X^T) == 0. First, forget the -4*alpha, because // we don't care about constant factors. So we want: // tr(M * M^T * (P - scale^2 I)) == 0. // Since M M^T == P, that means: // tr(P^2 - scale^2 P) == 0, // or scale^2 = tr(P^2) / tr(P). // Note: P is symmetric so it doesn't matter whether we use tr(P P) or // tr(P^T P); we use tr(P^T P) because I believe it's faster to compute. BaseFloat trace_P = P.Trace(), trace_P_P = TraceMatMat(P, P, kTrans); scale = std::sqrt(trace_P_P / trace_P); // The following is a tweak to avoid divergence when the eigenvalues aren't // close to being the same. trace_P is the sum of eigenvalues of P, and // trace_P_P is the sum-square of eigenvalues of P. Treat trace_P as a sum // of positive values, and trace_P_P as their sumsq. Then mean = trace_P / // dim, and trace_P_P cannot be less than dim * (trace_P / dim)^2, // i.e. trace_P_P >= trace_P^2 / dim. If ratio = trace_P_P * dim / // trace_P^2, then ratio >= 1.0, and the excess above 1.0 is a measure of // how far we are from convergence. If we're far from convergence, we make // the learning rate slower to reduce the risk of divergence, since the // update may not be stable for starting points far from equilibrium. BaseFloat ratio = (trace_P_P * P.NumRows() / (trace_P * trace_P)); KALDI_ASSERT(ratio > 0.999); if (ratio > 1.02) { update_speed *= 0.5; // Slow down the update speed to reduce the risk of divergence. if (ratio > 1.1) update_speed *= 0.5; // Slow it down even more. } } P.AddToDiag(-1.0 * scale * scale); // We may want to un-comment the following code block later on if we have a // problem with instability in setups with a non-floating orthonormal // constraint. /* if (!floating_scale) { // This is analogous to the stuff with 'ratio' above, but when we don't have // a floating scale. It reduces the chances of divergence when we have // a bad initialization. BaseFloat error = P.FrobeniusNorm(), error_proportion = error * error / P.NumRows(); // 'error_proportion' is the sumsq of elements in (P - I) divided by the // sumsq of elements of I. It should be much less than one (i.e. close to // zero) if the error is small. if (error_proportion > 0.02) { update_speed *= 0.5; if (error_proportion > 0.1) update_speed *= 0.5; } } */ if (GetVerboseLevel() >= 1) { BaseFloat error = P.FrobeniusNorm(); KALDI_VLOG(2) << "Error in orthogonality is " << error; } // see Sec. 2.2 of http://www.danielpovey.com/files/2018_interspeech_tdnnf.pdf // for explanation of the 1/(scale*scale) factor, but there is a difference in // notation; 'scale' here corresponds to 'alpha' in the paper, and // 'update_speed' corresponds to 'nu' in the paper. BaseFloat alpha = update_speed / (scale * scale); // At this point, the matrix P contains what, in the math, would be Q = // P-scale^2*I. The derivative of the objective function w.r.t. an element q(i,j) // of Q is now equal to -2*alpha*q(i,j), i.e. we could write q_deriv(i,j) // = -2*alpha*q(i,j) This is also the derivative of the objective function // w.r.t. p(i,j): i.e. p_deriv(i,j) = -2*alpha*q(i,j). // Suppose we have define this matrix as 'P_deriv'. // The derivative of the objective w.r.t M equals // 2 * P_deriv * M, which equals -4*alpha*(P-scale^2*I)*M. // (Currently the matrix P contains what, in the math, is P-scale^2*I). M_update.AddMatMat(-4.0 * alpha, P, kNoTrans, *M, kNoTrans, 0.0); M->AddMat(1.0, M_update); } /** This function, to be called after processing every minibatch, is responsible for enforcing the orthogonality constraint for any components of type LinearComponent or inheriting from AffineComponent that have the "orthonormal_constraint" value set. */ void ConstrainOrthonormal(Nnet *nnet) { for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *component = nnet->GetComponent(c); CuMatrixBase<BaseFloat> *params = NULL; BaseFloat orthonormal_constraint = 0.0; LinearComponent *lc = dynamic_cast<LinearComponent*>(component); if (lc != NULL && lc->OrthonormalConstraint() != 0.0) { orthonormal_constraint = lc->OrthonormalConstraint(); params = &(lc->Params()); } AffineComponent *ac = dynamic_cast<AffineComponent*>(component); if (ac != NULL && ac->OrthonormalConstraint() != 0.0) { orthonormal_constraint = ac->OrthonormalConstraint(); params = &(ac->LinearParams()); } TdnnComponent *tc = dynamic_cast<TdnnComponent*>(component); if (tc != NULL && tc->OrthonormalConstraint() != 0.0) { orthonormal_constraint = tc->OrthonormalConstraint(); params = &(tc->LinearParams()); } if (orthonormal_constraint == 0.0 || RandInt(0, 3) != 0) { // For efficiency, only do this every 4 or so minibatches-- it won't have // time stray far from the constraint in between. continue; } int32 rows = params->NumRows(), cols = params->NumCols(); if (rows <= cols) { ConstrainOrthonormalInternal(orthonormal_constraint, params); } else { CuMatrix<BaseFloat> params_trans(*params, kTrans); ConstrainOrthonormalInternal(orthonormal_constraint, ¶ms_trans); params->CopyFromMat(params_trans, kTrans); } } } void ConsolidateMemory(Nnet *nnet) { #if HAVE_CUDA == 1 if (CuDevice::Instantiate().Enabled()) { bool print_memory_info = (GetVerboseLevel() >= 1); if (print_memory_info) { KALDI_VLOG(1) << "Consolidating memory; will print memory usage before " "and after consolidating:"; g_cuda_allocator.PrintMemoryUsage(); } for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *comp = nnet->GetComponent(c); comp->ConsolidateMemory(); } if (print_memory_info) { g_cuda_allocator.PrintMemoryUsage(); } } #endif } // This code has been broken out of ReadEditConfig as it's quite long. // It implements the internals of the edit directive 'reduce-rank'. // See also the related direcive 'apply-svd'. void ReduceRankOfComponents(const std::string component_name_pattern, int32 rank, Nnet *nnet) { int32 num_components_changed = 0; for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *component = nnet->GetComponent(c); std::string component_name = nnet->GetComponentName(c); if (NameMatchesPattern(component_name.c_str(), component_name_pattern.c_str())) { AffineComponent *affine = dynamic_cast<AffineComponent*>(component); if (affine == NULL) { KALDI_WARN << "Not reducing rank of component " << component_name << " as it is not an AffineComponent."; continue; } int32 input_dim = affine->InputDim(), output_dim = affine->OutputDim(); if (input_dim <= rank || output_dim <= rank) { KALDI_WARN << "Not reducing rank of component " << component_name << " with SVD to rank " << rank << " because its dimension is " << input_dim << " -> " << output_dim; continue; } Matrix<BaseFloat> linear_params(affine->LinearParams()); Vector<BaseFloat> bias_params(affine->BiasParams()); // note: 'linear_params' is of dimension output_dim by input_dim. int32 middle_dim = std::min<int32>(input_dim, output_dim); Vector<BaseFloat> s(middle_dim); Matrix<BaseFloat> U(output_dim, middle_dim), Vt(middle_dim, input_dim); linear_params.Svd(&s, &U, &Vt); // make sure the singular values are sorted from greatest to least value. SortSvd(&s, &U, &Vt); BaseFloat s_sum_orig = s.Sum(); s.Resize(rank, kCopyData); U.Resize(output_dim, rank, kCopyData); Vt.Resize(rank, input_dim, kCopyData); BaseFloat s_sum_reduced = s.Sum(); KALDI_LOG << "For component " << component_name << " singular value sum changed by reduce-rank command " << (s_sum_orig - s_sum_reduced) << " (from " << s_sum_orig << " to " << s_sum_reduced << ")"; U.MulColsVec(s); Matrix<BaseFloat> linear_params_reduced_rank(output_dim, input_dim); linear_params_reduced_rank.AddMatMat(1.0, U, kNoTrans, Vt, kNoTrans, 0.0); CuMatrix<BaseFloat> linear_params_reduced_rank_cuda; linear_params_reduced_rank_cuda.Swap(&linear_params_reduced_rank); CuVector<BaseFloat> bias_params_cuda; bias_params_cuda.Swap(&bias_params); affine->SetParams(bias_params_cuda, linear_params_reduced_rank_cuda); num_components_changed++; } } KALDI_LOG << "Reduced rank of parameters of " << num_components_changed << " components."; } void ReadEditConfig(std::istream &edit_config_is, Nnet *nnet) { std::vector<std::string> lines; ReadConfigLines(edit_config_is, &lines); // we process this as a sequence of lines. std::vector<ConfigLine> config_lines; ParseConfigLines(lines, &config_lines); for (size_t i = 0; i < config_lines.size(); i++) { ConfigLine &config_line = config_lines[i]; const std::string &directive = config_lines[i].FirstToken(); if (directive == "convert-to-fixed-affine") { std::string name_pattern = "*"; // name_pattern defaults to '*' if none is given. Note: this pattern // matches names of components, not nodes. config_line.GetValue("name", &name_pattern); int32 num_components_changed = 0; for (int32 c = 0; c < nnet->NumComponents(); c++) { Component *component = nnet->GetComponent(c); AffineComponent *affine = NULL; if (NameMatchesPattern(nnet->GetComponentName(c).c_str(), name_pattern.c_str()) && (affine = dynamic_cast<AffineComponent*>(component))) { nnet->SetComponent(c, new FixedAffineComponent(*affine)); num_components_changed++; } } KALDI_LOG << "Converted " << num_components_changed << " components to FixedAffineComponent."; } else if (directive == "remove-orphan-nodes") { bool remove_orphan_inputs = false; config_line.GetValue("remove-orphan-inputs", &remove_orphan_inputs); nnet->RemoveOrphanNodes(remove_orphan_inputs); } else if (directive == "remove-orphan-components") { nnet->RemoveOrphanComponents(); } else if (directive == "remove-orphans") { bool remove_orphan_inputs = false; config_line.GetValue("remove-orphan-inputs", &remove_orphan_inputs); nnet->RemoveOrphanNodes(remove_orphan_inputs); nnet->RemoveOrphanComponents(); } else if (directive == "set-learning-rate") { std::string name_pattern = "*"; // name_pattern defaults to '*' if none is given. This pattern // matches names of components, not nodes. config_line.GetValue("name", &name_pattern); BaseFloat learning_rate = -1; if (!config_line.GetValue("learning-rate", &learning_rate)) { KALDI_ERR << "In edits-config, expected learning-rate to be set in line: " << config_line.WholeLine(); } // Note: the learning rate you provide will be multiplied by any // 'learning-rate-factor' that is defined in the component, // so if you call SetUnderlyingLearningRate(), the actual learning // rate (learning_rate_) is set to the value you provide times // learning_rate_factor_. UpdatableComponent *component = NULL; int32 num_learning_rates_set = 0; for (int32 c = 0; c < nnet->NumComponents(); c++) { if (NameMatchesPattern(nnet->GetComponentName(c).c_str(), name_pattern.c_str()) && (component = dynamic_cast<UpdatableComponent*>(nnet->GetComponent(c)))) { component->SetUnderlyingLearningRate(learning_rate); num_learning_rates_set++; } } KALDI_LOG << "Set learning rates for " << num_learning_rates_set << " components."; } else if (directive == "set-learning-rate-factor") { std::string name_pattern = "*"; // name_pattern defaults to '*' if none is given. config_line.GetValue("name", &name_pattern); BaseFloat learning_rate_factor = -1; if (!config_line.GetValue("learning-rate-factor", &learning_rate_factor)) { KALDI_ERR << "In edits-config, expected learning-rate-factor to be set in line: " << config_line.WholeLine(); } // Note: the learning_rate_factor_ defined in the component // sets to the value you provided, so if you call SetUnderlyingLearningRate(), // the actual learning rate (learning_rate_) is set to the value you provided // times learning_rate. UpdatableComponent *component = NULL; int32 num_learning_rate_factors_set = 0; for (int32 c = 0; c < nnet->NumComponents(); c++) { if (NameMatchesPattern(nnet->GetComponentName(c).c_str(), name_pattern.c_str()) && (component = dynamic_cast<UpdatableComponent*>(nnet->GetComponent(c)))) { component->SetLearningRateFactor(learning_rate_factor); num_learning_rate_factors_set++; } } KALDI_LOG << "Set learning rate factors for " << num_learning_rate_factors_set << " components."; } else if (directive == "rename-node") { // this is a shallow renaming of a node, and it requires that the name used is // not the name of another node. std::string old_name, new_name; if (!config_line.GetValue("old-name", &old_name) || !config_line.GetValue("new-name", &new_name) || config_line.HasUnusedValues()) { KALDI_ERR << "In edits-config, could not make sense of this rename-node " << "directive (expect old-name=xxx new-name=xxx) " << config_line.WholeLine(); } if (nnet->GetNodeIndex(old_name) < 0) KALDI_ERR << "Could not rename node from " << old_name << " to " << new_name << " because there is no node called " << old_name; // further checks will happen inside SetNodeName(). nnet->SetNodeName(nnet->GetNodeIndex(old_name), new_name); } else if (directive == "remove-output-nodes") { // note: after remove-output-nodes you probably want to do 'remove-orphans'. std::string name_pattern; if (!config_line.GetValue("name", &name_pattern) || config_line.HasUnusedValues()) KALDI_ERR << "In edits-config, could not make sense of " << "remove-output-nodes directive: " << config_line.WholeLine(); std::vector<int32> nodes_to_remove; int32 outputs_remaining = 0; for (int32 n = 0; n < nnet->NumNodes(); n++) { if (nnet->IsOutputNode(n)) { if (NameMatchesPattern(nnet->GetNodeName(n).c_str(), name_pattern.c_str())) nodes_to_remove.push_back(n); else outputs_remaining++; } } KALDI_LOG << "Removing " << nodes_to_remove.size() << " output nodes."; if (outputs_remaining == 0) KALDI_ERR << "All outputs were removed."; nnet->RemoveSomeNodes(nodes_to_remove); } else if (directive == "set-dropout-proportion") { std::string name_pattern = "*"; // name_pattern defaults to '*' if none is given. This pattern // matches names of components, not nodes. config_line.GetValue("name", &name_pattern); BaseFloat proportion = -1; if (!config_line.GetValue("proportion", &proportion)) { KALDI_ERR << "In edits-config, expected proportion to be set in line: " << config_line.WholeLine(); } int32 num_dropout_proportions_set = 0; for (int32 c = 0; c < nnet->NumComponents(); c++) { if (NameMatchesPattern(nnet->GetComponentName(c).c_str(), name_pattern.c_str())) { DropoutComponent *dropout_component = dynamic_cast<DropoutComponent*>(nnet->GetComponent(c)); DropoutMaskComponent *mask_component = dynamic_cast<DropoutMaskComponent*>(nnet->GetComponent(c)); GeneralDropoutComponent *general_dropout_component = dynamic_cast<GeneralDropoutComponent*>(nnet->GetComponent(c)); if (dropout_component != NULL) { dropout_component->SetDropoutProportion(proportion); num_dropout_proportions_set++; } else if (mask_component != NULL){ mask_component->SetDropoutProportion(proportion); num_dropout_proportions_set++; } else if (general_dropout_component != NULL){ general_dropout_component->SetDropoutProportion(proportion); num_dropout_proportions_set++; } } } KALDI_LOG << "Set dropout proportions for " << num_dropout_proportions_set << " components."; } else if (directive == "apply-svd") { std::string name_pattern; int32 bottleneck_dim = -1; BaseFloat energy_threshold = -1; BaseFloat shrinkage_threshold = 1.0; config_line.GetValue("bottleneck-dim", &bottleneck_dim); config_line.GetValue("energy-threshold", &energy_threshold); config_line.GetValue("shrinkage-threshold", &shrinkage_threshold); if (!config_line.GetValue("name", &name_pattern)) KALDI_ERR << "Edit directive apply-svd requires 'name' to be specified."; if (bottleneck_dim <= 0 && energy_threshold <=0) KALDI_ERR << "Either Bottleneck-dim or energy-threshold " "must be set in apply-svd command. " "Range of possible values is (0 1]"; SvdApplier applier(name_pattern, bottleneck_dim, energy_threshold, shrinkage_threshold, nnet); applier.ApplySvd(); } else if (directive == "reduce-rank") { std::string name_pattern; int32 rank = -1; if (!config_line.GetValue("name", &name_pattern) || !config_line.GetValue("rank", &rank)) KALDI_ERR << "Edit directive reduce-rank requires 'name' and " "'rank' to be specified."; if (rank <= 0) KALDI_ERR << "Rank must be positive in reduce-rank command."; ReduceRankOfComponents(name_pattern, rank, nnet); } else { KALDI_ERR << "Directive '" << directive << "' is not currently " "supported (reading edit-config)."; } if (config_line.HasUnusedValues()) { KALDI_ERR << "Could not interpret '" << config_line.UnusedValues() << "' in edit config line " << config_line.WholeLine(); } } } /// Returns true if 'nnet' has some kind of recurrency. bool NnetIsRecurrent(const Nnet &nnet) { std::vector<std::vector<int32> > graph; NnetToDirectedGraph(nnet, &graph); return GraphHasCycles(graph); } class ModelCollapser { public: ModelCollapser(const CollapseModelConfig &config, Nnet *nnet): config_(config), nnet_(nnet) { } void Collapse() { bool changed = true; int32 num_nodes = nnet_->NumNodes(), num_iters = 0; int32 num_components1 = nnet_->NumComponents(); for (; changed; num_iters++) { changed = false; for (int32 n = 0; n < num_nodes; n++) if (OptimizeNode(n)) changed = true; // we shouldn't iterate more than a couple of times. if (num_iters >= 10) KALDI_ERR << "Something went wrong collapsing model."; } int32 num_components2 = nnet_->NumComponents(); nnet_->RemoveOrphanNodes(); nnet_->RemoveOrphanComponents(); int32 num_components3 = nnet_->NumComponents(); if (num_components2 != num_components1 || num_components3 != num_components2) KALDI_LOG << "Added " << (num_components2 - num_components1) << " components, removed " << (num_components2 - num_components3); } private: /** This function tries to collapse two successive components, where the component 'component_index1' appears as the input of 'component_index2'. If the two components can be collapsed in that way, it returns the index of a combined component. Note: in addition to the two components simply being chained together, this function supports the case where different time-offsets of the first component are appendend together as the input of the second component. So the input-dim of the second component may be a multiple of the output-dim of the first component. The function returns the component-index of a (newly created or existing) component that combines both of these components, if it's possible to combine them; or it returns -1 if it's not possible. */ int32 CollapseComponents(int32 component_index1, int32 component_index2) { int32 ans; if (config_.collapse_dropout && (ans = CollapseComponentsDropout(component_index1, component_index2)) != -1) return ans; if (config_.collapse_batchnorm && (ans = CollapseComponentsBatchnorm(component_index1, component_index2)) != -1) return ans; if (config_.collapse_affine && (ans = CollapseComponentsAffine(component_index1, component_index2)) != -1) return ans; if (config_.collapse_scale && (ans = CollapseComponentsScale(component_index1, component_index2)) != -1) return ans; return -1; } // If the SumDescriptor has exactly one part that is either a // SimpleForwardingDescriptor or an OffsetForwardingDescriptor containing a // SimpleForwardingDescriptor, returns the node-index that the // SimpleForwardingDescriptor contains. Otherwise returns -1. // // E.g. of the SumDescriptor represents something like "foo" it returns // the index for "foo"; if it represents "Offset(foo, -2)" it returns // the index for "foo"; if it represents something else like // "Sum(foo, bar)" or "IfDefined(foo)", then it returns -1. int32 SumDescriptorIsCollapsible(const SumDescriptor &sum_desc) { // I don't much like having to use dynamic_cast here. const SimpleSumDescriptor *ss = dynamic_cast<const SimpleSumDescriptor*>( &sum_desc); if (ss == NULL) return -1; const ForwardingDescriptor *fd = &(ss->Src()); const OffsetForwardingDescriptor *od = dynamic_cast<const OffsetForwardingDescriptor*>(fd); if (od != NULL) fd = &(od->Src()); const SimpleForwardingDescriptor *sd = dynamic_cast<const SimpleForwardingDescriptor*>(fd); if (sd == NULL) return -1; else { // the following is a rather roundabout way to get the node-index from a // SimpleForwardingDescriptor, but it works (it avoids adding other stuff // to the interface). std::vector<int32> v; sd->GetNodeDependencies(&v); int32 node_index = v[0]; return node_index; } } // If the Descriptor is a sum over different offsets of a particular node, // e.g. something of the form "Sum(Offset(foo, -2), Offset(foo, 2))" or in the // most degenerate case just "foo", then this function returns the index for // foo; otherwise it returns -1. int32 DescriptorIsCollapsible(const Descriptor &desc) { int32 ans = SumDescriptorIsCollapsible(desc.Part(0)); for (int32 i = 1; i < desc.NumParts(); i++) { if (ans != -1) { int32 node_index = SumDescriptorIsCollapsible(desc.Part(i)); if (node_index != ans) ans = -1; } } // note: ans is only >= 0 if the answers from all parts of // the SumDescriptors were >=0 and identical to each other. // Otherwise it will be -1. return ans; } // Replaces all the nodes with index 'node_to_replace' in 'src' with the // descriptor 'expr', and returns the appropriately modified Descriptor. For // example, if 'src' is 'Append(Offset(foo, -1), Offset(foo, 1))' and 'expr' // is 'Offset(bar, -1)', this should give you: 'Append(Offset(bar, -2), bar)'. Descriptor ReplaceNodeInDescriptor(const Descriptor &src, int32 node_to_replace, const Descriptor &expr) { // The way we replace it is at the textual level: we create a "fake" vector // of node-names where the printed form of 'expr' appears as the // node name in node_names[node_to_replace]; we print the descriptor // in 'src' using that faked node-names vector; and we parse it again // using the real node-names vector. std::vector<std::string> node_names = nnet_->GetNodeNames(); std::ostringstream expr_os; expr.WriteConfig(expr_os, node_names); node_names[node_to_replace] = expr_os.str(); std::ostringstream src_replaced_os; src.WriteConfig(src_replaced_os, node_names); std::vector<std::string> tokens; // now, in the example, src_replaced_os.str() would equal // Append(Offset(Offset(bar, -1), -1), Offset(Offset(bar, -1), 1)). bool b = DescriptorTokenize(src_replaced_os.str(), &tokens); KALDI_ASSERT(b); // 'tokens' might now contain something like [ "Append", "(", "Offset", ..., ")" ]. tokens.push_back("end of input"); const std::string *next_token = &(tokens[0]); Descriptor ans; // parse using the un-modified node names. ans.Parse(nnet_->GetNodeNames(), &next_token); KALDI_ASSERT(*next_token == "end of input"); // Note: normalization of expressions in Descriptors, such as conversion of // Offset(Offset(bar, -1), -1) to Offset(bar, -2), takes place inside the // Descriptor parsing code. return ans; } /** This function modifies the neural network in the case where 'node_index' is a component-input node whose component (in the node at 'node_index + 1), if a bunch of other conditions also apply. First, he descriptor in the node at 'node_index' has to have a certain limited structure, e.g.: - the input-descriptor is a component-node name like 'foo' or: - the input-descriptor is a combination of Append and/or and Offset expressions, like: 'Append(Offset(foo, -3), foo, Offset(foo, 3))', referring to only a single node 'foo'. ALSO the components need to be collapsible by the function CollapseComponents(), which will only be possible for certain pairs of component types (like, say, a dropout node preceding an affine or convolutional node); see that function for details. This function will (if it does anything), modify the node to replace the component at 'node_index + 1' with a newly created component that combines the two components involved. It will also modify the node at 'node_index' by replacing its Descriptor with a modified input descriptor, so that if the input-descriptor of node 'foo' was 'bar', the descriptor for our node would now look like: 'Append(Offset(bar, -3), bar, Offset(bar, 3))'... and note that 'bar' itself doesn't have to be just a node-name, it can be a more general expression. This function returns true if it changed something in the neural net, and false otherwise. */ bool OptimizeNode(int32 node_index) { NetworkNode &descriptor_node = nnet_->GetNode(node_index); if (descriptor_node.node_type != kDescriptor || node_index + 1 >= nnet_->NumNodes()) return false; NetworkNode &component_node = nnet_->GetNode(node_index + 1); if (component_node.node_type != kComponent) return false; Descriptor &descriptor = descriptor_node.descriptor; int32 component_index = component_node.u.component_index; int32 input_node_index = DescriptorIsCollapsible(descriptor); if (input_node_index == -1) return false; // do nothing, the expression in the Descriptor is too // general for this code to handle. const NetworkNode &input_node = nnet_->GetNode(input_node_index); if (input_node.node_type != kComponent) return false; int32 input_component_index = input_node.u.component_index; int32 combined_component_index = CollapseComponents(input_component_index, component_index); if (combined_component_index == -1) return false; // these components were not of types that can be // collapsed. component_node.u.component_index = combined_component_index; // 'input_descriptor_node' is the input descriptor of the component // that's the input to the node in "node_index". (e.g. the component for // the node "foo" in our example above). const NetworkNode &input_descriptor_node = nnet_->GetNode(input_node_index - 1); const Descriptor &input_descriptor = input_descriptor_node.descriptor; // The next statement replaces the descriptor in the network node with one // in which the component 'input_component_index' has been replaced with its // input, thus bypassing the component in 'input_component_index'. // We'll later remove that component and its node from the network, if // needed by RemoveOrphanNodes() and RemoveOrphanComponents(). descriptor = ReplaceNodeInDescriptor(descriptor, input_node_index, input_descriptor); return true; } /** Tries to produce a component that's equivalent to running the component 'component_index2' with input given by 'component_index1'. This handles the case where 'component_index1' is of type DropoutComponent or GeneralDropoutComponent, and where 'component_index2' is of type AffineComponent, NaturalGradientAffineComponent, LinearComponent, TdnnComponent or TimeHeightConvolutionComponent. Returns -1 if this code can't produce a combined component (normally because the components have the wrong types). */ int32 CollapseComponentsDropout(int32 component_index1, int32 component_index2) { const DropoutComponent *dropout_component = dynamic_cast<const DropoutComponent*>( nnet_->GetComponent(component_index1)); const GeneralDropoutComponent *general_dropout_component = dynamic_cast<const GeneralDropoutComponent*>( nnet_->GetComponent(component_index1)); if (dropout_component == NULL && general_dropout_component == NULL) return -1; BaseFloat scale; // the scale we have to apply to correct for removing // this dropout comonent. if (dropout_component != NULL) { BaseFloat dropout_proportion = dropout_component->DropoutProportion(); scale = 1.0 / (1.0 - dropout_proportion); } else { // for GeneralDropoutComponent, it's done in such a way that the expectation // is always 1. (When it's nonzero, we give it a value 1/(1-dropout_proportion). // So no scaling is needed. scale = 1.0; } // note: if the 2nd component is not of a type that we can scale, the // following function call will return -1, which is OK. return GetScaledComponentIndex(component_index2, scale); } /** Tries to produce a component that's equivalent to running the component 'component_index2' with input given by 'component_index1'. This handles the case where 'component_index1' is of type BatchnormComponent, and where 'component_index2' is of type AffineComponent or NaturalGradientAffineComponent. Returns -1 if this code can't produce a combined component (normally because the components have the wrong types). */ int32 CollapseComponentsBatchnorm(int32 component_index1, int32 component_index2) { const BatchNormComponent *batchnorm_component = dynamic_cast<const BatchNormComponent*>( nnet_->GetComponent(component_index1)); if (batchnorm_component == NULL) return -1; if (batchnorm_component->Offset().Dim() == 0) { KALDI_ERR << "Expected batch-norm components to have test-mode set."; } std::string batchnorm_component_name = nnet_->GetComponentName( component_index1); return GetDiagonallyPreModifiedComponentIndex(batchnorm_component->Offset(), batchnorm_component->Scale(), batchnorm_component_name, component_index2); } /** Tries to produce a component that's equivalent to running the component 'component_index2' with input given by 'component_index1'. This handles the case where 'component_index1' is of type FixedAffineComponent, AffineComponent or NaturalGradientAffineComponent, and 'component_index2' is of type AffineComponent or NaturalGradientAffineComponent. Returns -1 if this code can't produce a combined component. */ int32 CollapseComponentsAffine(int32 component_index1, int32 component_index2) { const FixedAffineComponent *fixed_affine_component1 = dynamic_cast<const FixedAffineComponent*>( nnet_->GetComponent(component_index1)); const AffineComponent *affine_component1 = dynamic_cast<const AffineComponent*>( nnet_->GetComponent(component_index1)), *affine_component2 = dynamic_cast<const AffineComponent*>( nnet_->GetComponent(component_index2)); if (affine_component2 == NULL || (fixed_affine_component1 == NULL && affine_component1 == NULL)) return -1; std::ostringstream new_component_name_os; new_component_name_os << nnet_->GetComponentName(component_index1) << "." << nnet_->GetComponentName(component_index2); std::string new_component_name = new_component_name_os.str(); int32 new_component_index = nnet_->GetComponentIndex(new_component_name); if (new_component_index >= 0) return new_component_index; // we previously created this. const CuMatrix<BaseFloat> *linear_params1; const CuVector<BaseFloat> *bias_params1; if (fixed_affine_component1 != NULL) { if (fixed_affine_component1->InputDim() > fixed_affine_component1->OutputDim()) { // first affine component is dimension-reducing, so combining the two // might be inefficient. return -1; } linear_params1 = &(fixed_affine_component1->LinearParams()); bias_params1 = &(fixed_affine_component1->BiasParams()); } else { if (affine_component1->InputDim() > affine_component1->OutputDim()) { // first affine component is dimension-reducing, so combining the two // might be inefficient. return -1; } linear_params1 = &(affine_component1->LinearParams()); bias_params1 = &(affine_component1->BiasParams()); } int32 input_dim1 = linear_params1->NumCols(), output_dim1 = linear_params1->NumRows(), input_dim2 = affine_component2->InputDim(), output_dim2 = affine_component2->OutputDim(); KALDI_ASSERT(input_dim2 % output_dim1 == 0); // with typical configurations for TDNNs, like Append(-3, 0, 3) [in xconfigs], a.k.a. // Append(Offset(foo, -3), foo, Offset(foo, 3)), the first component's output may // be smaller than the second component's input. We construct a single // transform with a block-diagonal structure in this case. int32 multiple = input_dim2 / output_dim1; CuVector<BaseFloat> bias_params1_full(input_dim2); CuMatrix<BaseFloat> linear_params1_full(input_dim2, multiple * input_dim1); for (int32 i = 0; i < multiple; i++) { bias_params1_full.Range(i * output_dim1, output_dim1).CopyFromVec(*bias_params1); linear_params1_full.Range(i * output_dim1, output_dim1, i * input_dim1, input_dim1).CopyFromMat( *linear_params1); } const CuVector<BaseFloat> &bias_params2 = affine_component2->BiasParams(); const CuMatrix<BaseFloat> &linear_params2 = affine_component2->LinearParams(); int32 new_input_dim = multiple * input_dim1, new_output_dim = output_dim2; CuMatrix<BaseFloat> new_linear_params(new_output_dim, new_input_dim); CuVector<BaseFloat> new_bias_params(bias_params2); new_bias_params.AddMatVec(1.0, linear_params2, kNoTrans, bias_params1_full, 1.0); new_linear_params.AddMatMat(1.0, linear_params2, kNoTrans, linear_params1_full, kNoTrans, 0.0); AffineComponent *new_component = new AffineComponent(); new_component->Init(new_input_dim, new_output_dim, 0.0, 0.0); new_component->SetParams(new_bias_params, new_linear_params); return nnet_->AddComponent(new_component_name, new_component); } /** Tries to produce a component that's equivalent to running the component 'component_index2' with input given by 'component_index1'. This handles the case where 'component_index1' is of type AffineComponent or NaturalGradientAffineComponent, and 'component_index2' is of type FixedScaleComponent, and the output dim of the first is the same as the input dim of the second. This situation is common in output layers. Later if it's needed, we could easily enable the code to support PerElementScaleComponent. Returns -1 if this code can't produce a combined component. */ int32 CollapseComponentsScale(int32 component_index1, int32 component_index2) { const AffineComponent *affine_component1 = dynamic_cast<const AffineComponent*>( nnet_->GetComponent(component_index1)); const FixedScaleComponent *fixed_scale_component2 = dynamic_cast<const FixedScaleComponent*>( nnet_->GetComponent(component_index2)); if (affine_component1 == NULL || fixed_scale_component2 == NULL || affine_component1->OutputDim() != fixed_scale_component2->InputDim()) return -1; std::ostringstream new_component_name_os; new_component_name_os << nnet_->GetComponentName(component_index1) << "." << nnet_->GetComponentName(component_index2); std::string new_component_name = new_component_name_os.str(); int32 new_component_index = nnet_->GetComponentIndex(new_component_name); if (new_component_index >= 0) return new_component_index; // we previously created this. CuMatrix<BaseFloat> linear_params(affine_component1->LinearParams()); CuVector<BaseFloat> bias_params(affine_component1->BiasParams()); const CuVector<BaseFloat> &scales = fixed_scale_component2->Scales(); bias_params.MulElements(scales); linear_params.MulRowsVec(scales); AffineComponent *new_affine_component = dynamic_cast<AffineComponent*>(affine_component1->Copy()); new_affine_component->SetParams(bias_params, linear_params); return nnet_->AddComponent(new_component_name, new_affine_component); } /** This function finds, or creates, a component which is like 'component_index' but is combined with a diagonal offset-and-scale transform *before* the component. (We may later create a function called GetDiagonallyPostModifiedComponentIndex if we need to apply the transform *after* the component. This function doesn't work for convolutional components, because due to zero-padding, it's not possible to represent an offset/scale on the input filters via changes in the convolutional parameters. [the scale, yes; but we don't bother doing that.] This may require modifying its linear and bias parameters. @param [in] offset The offset term 'b' in the diagnonal transform y = a x + b. @param [in] scale The scale term 'a' in the diagnonal transform y = a x + b. Must have the same dimension as 'offset'. @param [in] src_identifier A string that uniquely identifies 'offset' and 'scale'. In practice it will be the component-index from where 'offset' and 'scale' were taken. @param [in] component_index The component to be modified (not in-place, but as a copy). The component described in 'component_index' must be AffineComponent, NaturalGradientAffineComponent, LinearComponent or TdnnComponent, and the dimension of 'offset'/'scale' should divide the component input dimension, otherwise it's an error. @return Returns the component-index of a suitably modified component. If one like this already exists, the existing one will be returned. If the component in 'component_index' was not of a type that can be modified in this way, returns -1. */ int32 GetDiagonallyPreModifiedComponentIndex( const CuVectorBase<BaseFloat> &offset, const CuVectorBase<BaseFloat> &scale, const std::string &src_identifier, int32 component_index) { KALDI_ASSERT(offset.Dim() > 0 && offset.Dim() == scale.Dim()); if (offset.Max() == 0.0 && offset.Min() == 0.0 && scale.Max() == 1.0 && scale.Min() == 1.0) return component_index; // identity transform. std::ostringstream new_component_name_os; new_component_name_os << src_identifier << "." << nnet_->GetComponentName(component_index); std::string new_component_name = new_component_name_os.str(); int32 new_component_index = nnet_->GetComponentIndex(new_component_name); if (new_component_index >= 0) return new_component_index; // we previously created this. const Component *component = nnet_->GetComponent(component_index); const AffineComponent *affine_component = dynamic_cast<const AffineComponent*>(component); const LinearComponent *linear_component = dynamic_cast<const LinearComponent*>(component); const TdnnComponent *tdnn_component = dynamic_cast<const TdnnComponent*>(component); Component *new_component = NULL; if (affine_component != NULL) { new_component = component->Copy(); AffineComponent *new_affine_component = dynamic_cast<AffineComponent*>(new_component); PreMultiplyAffineParameters(offset, scale, &(new_affine_component->BiasParams()), &(new_affine_component->LinearParams())); } else if (linear_component != NULL) { CuVector<BaseFloat> bias_params(linear_component->OutputDim()); AffineComponent *new_affine_component = new AffineComponent(linear_component->Params(), bias_params, linear_component->LearningRate()); PreMultiplyAffineParameters(offset, scale, &(new_affine_component->BiasParams()), &(new_affine_component->LinearParams())); new_component = new_affine_component; } else if (tdnn_component != NULL) { new_component = tdnn_component->Copy(); TdnnComponent *new_tdnn_component = dynamic_cast<TdnnComponent*>(new_component); if (new_tdnn_component->BiasParams().Dim() == 0) { // make sure it has a bias even if it had none before. new_tdnn_component->BiasParams().Resize( new_tdnn_component->OutputDim()); } PreMultiplyAffineParameters(offset, scale, &(new_tdnn_component->BiasParams()), &(new_tdnn_component->LinearParams())); } else { return -1; // we can't do this: this component isn't of the right type. } return nnet_->AddComponent(new_component_name, new_component); } /** This helper function, used GetDiagonallyPreModifiedComponentIndex, modifies the linear and bias parameters of an affine transform to capture the effect of preceding that affine transform by a diagonal affine transform with parameters 'offset' and 'scale'. The dimension of 'offset' and 'scale' must be the same and must divide the input dim of the affine transform, i.e. must divide linear_params->NumCols(). */ static void PreMultiplyAffineParameters( const CuVectorBase<BaseFloat> &offset, const CuVectorBase<BaseFloat> &scale, CuVectorBase<BaseFloat> *bias_params, CuMatrixBase<BaseFloat> *linear_params) { int32 input_dim = linear_params->NumCols(), transform_dim = offset.Dim(); KALDI_ASSERT(bias_params->Dim() == linear_params->NumRows() && offset.Dim() == scale.Dim() && input_dim % transform_dim == 0); // we may have to repeat 'offset' and scale' several times. // 'full_offset' and 'full_scale' may be repeated versions of // 'offset' and 'scale' in case input_dim > transform_dim. CuVector<BaseFloat> full_offset(input_dim), full_scale(input_dim); for (int32 d = 0; d < input_dim; d += transform_dim) { full_offset.Range(d, transform_dim).CopyFromVec(offset); full_scale.Range(d, transform_dim).CopyFromVec(scale); } // Image the affine component does y = a x + b, and by applying // the pre-transform we are replacing x with s x + o // s for scale and o for offset), so we have: // y = a s x + (b + a o). // do: b += a o. bias_params->AddMatVec(1.0, *linear_params, kNoTrans, full_offset, 1.0); // do: a = a * s. linear_params->MulColsVec(full_scale); } /** Given a component 'component_index', returns a component which will give the same output as the current component gives when its input is scaled by 'scale'. This will generally mean applying the scale to the linear parameters in the component, if it is an affine, linear or convolutional component. If the component referred to in 'component_index' is not an affine or convolutional component, and therefore cannot be scaled (by this code), then this function returns -1. */ int32 GetScaledComponentIndex(int32 component_index, BaseFloat scale) { if (scale == 1.0) return component_index; std::ostringstream os; os << nnet_->GetComponentName(component_index) << ".scale" << std::setprecision(3) << scale; std::string new_component_name = os.str(); // e.g. foo.s2.0 int32 ans = nnet_->GetComponentIndex(new_component_name); if (ans >= 0) return ans; // one already exists, no need to create it. const Component *current_component = nnet_->GetComponent(component_index); const AffineComponent *affine_component = dynamic_cast<const AffineComponent*>(current_component); const TimeHeightConvolutionComponent *conv_component = dynamic_cast<const TimeHeightConvolutionComponent*>(current_component); const LinearComponent *linear_component = dynamic_cast<const LinearComponent*>(current_component); const TdnnComponent *tdnn_component = dynamic_cast<const TdnnComponent*>(current_component); if (affine_component == NULL && conv_component == NULL && linear_component == NULL && tdnn_component == NULL) { // We can't scale this component (at least, not using this code). return -1; } Component *new_component = current_component->Copy(); if (affine_component != NULL) { // AffineComponent or NaturalGradientAffineComponent. dynamic_cast<AffineComponent*>(new_component)-> LinearParams().Scale(scale); } else if (conv_component != NULL) { dynamic_cast<TimeHeightConvolutionComponent*>(new_component)-> ScaleLinearParams(scale); } else if (linear_component != NULL) { dynamic_cast<LinearComponent*>(new_component)->Params().Scale(scale); } else { KALDI_ASSERT(tdnn_component != NULL); dynamic_cast<TdnnComponent*>(new_component)->LinearParams().Scale(scale); } return nnet_->AddComponent(new_component_name, new_component); } const CollapseModelConfig &config_; Nnet *nnet_; }; void CollapseModel(const CollapseModelConfig &config, Nnet *nnet) { ModelCollapser c(config, nnet); c.Collapse(); } bool UpdateNnetWithMaxChange(const Nnet &delta_nnet, BaseFloat max_param_change, BaseFloat max_change_scale, BaseFloat scale, Nnet *nnet, std::vector<int32> * num_max_change_per_component_applied, int32 *num_max_change_global_applied) { KALDI_ASSERT(nnet != NULL); // computes scaling factors for per-component max-change const int32 num_updatable = NumUpdatableComponents(delta_nnet); Vector<BaseFloat> scale_factors = Vector<BaseFloat>(num_updatable); BaseFloat param_delta_squared = 0.0; int32 num_max_change_per_component_applied_per_minibatch = 0; BaseFloat min_scale = 1.0; std::string component_name_with_min_scale; BaseFloat max_change_with_min_scale; int32 i = 0; for (int32 c = 0; c < delta_nnet.NumComponents(); c++) { const Component *comp = delta_nnet.GetComponent(c); if (comp->Properties() & kUpdatableComponent) { const UpdatableComponent *uc = dynamic_cast<const UpdatableComponent*>(comp); if (uc == NULL) KALDI_ERR << "Updatable component does not inherit from class " << "UpdatableComponent; change this code."; BaseFloat max_param_change_per_comp = uc->MaxChange(); KALDI_ASSERT(max_param_change_per_comp >= 0.0); BaseFloat dot_prod = uc->DotProduct(*uc); if (max_param_change_per_comp != 0.0 && std::sqrt(dot_prod) * std::abs(scale) > max_param_change_per_comp * max_change_scale) { scale_factors(i) = max_param_change_per_comp * max_change_scale / (std::sqrt(dot_prod) * std::abs(scale)); (*num_max_change_per_component_applied)[i]++; num_max_change_per_component_applied_per_minibatch++; KALDI_VLOG(2) << "Parameters in " << delta_nnet.GetComponentName(c) << " change too big: " << std::sqrt(dot_prod) << " * " << scale << " > " << "max-change * max-change-scale=" << max_param_change_per_comp << " * " << max_change_scale << ", scaling by " << scale_factors(i); } else { scale_factors(i) = 1.0; } if (i == 0 || scale_factors(i) < min_scale) { min_scale = scale_factors(i); component_name_with_min_scale = delta_nnet.GetComponentName(c); max_change_with_min_scale = max_param_change_per_comp; } param_delta_squared += std::pow(scale_factors(i), static_cast<BaseFloat>(2.0)) * dot_prod; i++; } } KALDI_ASSERT(i == scale_factors.Dim()); BaseFloat param_delta = std::sqrt(param_delta_squared); // computes the scale for global max-change param_delta *= std::abs(scale); if (max_param_change != 0.0) { if (param_delta > max_param_change * max_change_scale) { if (param_delta - param_delta != 0.0) { KALDI_WARN << "Infinite parameter change, will not apply."; return false; } else { scale *= max_param_change * max_change_scale / param_delta; (*num_max_change_global_applied)++; } } } if ((max_param_change != 0.0 && param_delta > max_param_change * max_change_scale && param_delta - param_delta == 0.0) || min_scale < 1.0) { std::ostringstream ostr; if (min_scale < 1.0) ostr << "Per-component max-change active on " << num_max_change_per_component_applied_per_minibatch << " / " << num_updatable << " Updatable Components." << " (Smallest factor=" << min_scale << " on " << component_name_with_min_scale << " with max-change=" << max_change_with_min_scale <<"). "; if (param_delta > max_param_change * max_change_scale) ostr << "Global max-change factor was " << max_param_change * max_change_scale / param_delta << " with max-change=" << max_param_change << "."; KALDI_LOG << ostr.str(); } // applies both of the max-change scalings all at once, component by component // and updates parameters scale_factors.Scale(scale); AddNnetComponents(delta_nnet, scale_factors, scale, nnet); return true; } int32 GetNumNvalues(const std::vector<NnetIo> &io_vec, bool exhaustive) { int32 num_n_values = -1; for (size_t i = 0; i < io_vec.size(); i++) { const NnetIo &io = io_vec[i]; int32 this_num_n_values; const std::vector<Index> &index_vec = io.indexes; KALDI_ASSERT(!index_vec.empty() && "Empty input or output in ComputationRequest?"); if (exhaustive) { int32 lowest_n_value = std::numeric_limits<int32>::max(), highest_n_value = std::numeric_limits<int32>::min(); std::vector<Index>::const_iterator iter = index_vec.begin(), end = index_vec.end(); for (; iter != end; ++iter) { int32 n = iter->n; if (n < lowest_n_value) { lowest_n_value = n; } if (n > highest_n_value) { highest_n_value = n; } } this_num_n_values = highest_n_value + 1 - lowest_n_value; } else { // we assume that the 'n' values range from zero to N-1, // where N is the number of distinct 'n' values. this_num_n_values = index_vec.back().n + 1; } if (num_n_values == -1) { num_n_values = this_num_n_values; } else { if (num_n_values != this_num_n_values) { KALDI_ERR << "Different inputs/outputs of ComputationRequest have " "different numbers of n values: " << num_n_values << " vs. " << this_num_n_values; } } } if (!exhaustive && RandInt(0, 100) == 0) { int32 num_n_values_check = GetNumNvalues(io_vec, true); if (num_n_values != num_n_values_check) { KALDI_ERR << "Exhaustive and quick checks returned different " "answers: " << num_n_values << " vs. " << num_n_values_check; } } return num_n_values; } void ApplyL2Regularization(const Nnet &nnet, BaseFloat l2_regularize_scale, Nnet *delta_nnet) { if (l2_regularize_scale == 0.0) return; for (int32 c = 0; c < nnet.NumComponents(); c++) { const Component *src_component_in = nnet.GetComponent(c); if (src_component_in->Properties() & kUpdatableComponent) { const UpdatableComponent *src_component = dynamic_cast<const UpdatableComponent*>(src_component_in); UpdatableComponent *dest_component = dynamic_cast<UpdatableComponent*>(delta_nnet->GetComponent(c)); // The following code will segfault if they aren't both updatable, which // would be a bug in the calling code. BaseFloat lrate = dest_component->LearningRate(), l2_regularize = dest_component->L2Regularization(); KALDI_ASSERT(lrate >= 0 && l2_regularize >= 0); BaseFloat scale = -2.0 * l2_regularize_scale * lrate * l2_regularize; if (scale != 0.0) dest_component->Add(scale, *src_component); } } } bool UpdateNnetWithMaxChange(const Nnet &delta_nnet, BaseFloat max_param_change, BaseFloat max_change_scale, BaseFloat scale, Nnet *nnet, MaxChangeStats *stats) { bool ans = UpdateNnetWithMaxChange( delta_nnet, max_param_change, max_change_scale, scale, nnet, &(stats->num_max_change_per_component_applied), &(stats->num_max_change_global_applied)); stats->num_minibatches_processed++; return ans; } void MaxChangeStats::Print(const Nnet &nnet) const { int32 i = 0; for (int32 c = 0; c < nnet.NumComponents(); c++) { const Component *comp = nnet.GetComponent(c); if (comp->Properties() & kUpdatableComponent) { const UpdatableComponent *uc = dynamic_cast<const UpdatableComponent*>( comp); if (uc == NULL) KALDI_ERR << "Updatable component does not inherit from class " << "UpdatableComponent; change this code."; if (num_max_change_per_component_applied[i] > 0) KALDI_LOG << "For " << nnet.GetComponentName(c) << ", per-component max-change was enforced " << ((100.0 * num_max_change_per_component_applied[i]) / num_minibatches_processed) << " \% of the time."; i++; } } if (num_max_change_global_applied > 0) KALDI_LOG << "The global max-change was enforced " << ((100.0 * num_max_change_global_applied) / num_minibatches_processed) << " \% of the time."; } } // namespace nnet3 } // namespace kaldi |