nnet-utils.cc
96.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
// nnet3/nnet-utils.cc
// Copyright 2015 Johns Hopkins University (author: Daniel Povey)
// 2016 Daniel Galvez
//
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <iomanip>
#include "nnet3/nnet-utils.h"
#include "nnet3/nnet-graph.h"
#include "nnet3/nnet-simple-component.h"
#include "nnet3/nnet-normalize-component.h"
#include "nnet3/nnet-general-component.h"
#include "nnet3/nnet-convolutional-component.h"
#include "nnet3/nnet-parse.h"
#include "nnet3/nnet-computation-graph.h"
#include "nnet3/nnet-diagnostics.h"
namespace kaldi {
namespace nnet3 {
int32 NumOutputNodes(const Nnet &nnet) {
int32 ans = 0;
for (int32 n = 0; n < nnet.NumNodes(); n++)
if (nnet.IsOutputNode(n))
ans++;
return ans;
}
int32 NumInputNodes(const Nnet &nnet) {
int32 ans = 0;
for (int32 n = 0; n < nnet.NumNodes(); n++)
if (nnet.IsInputNode(n))
ans++;
return ans;
}
bool IsSimpleNnet(const Nnet &nnet) {
// check that we have an output node and called "output".
if (nnet.GetNodeIndex("output") == -1 ||
!nnet.IsOutputNode(nnet.GetNodeIndex("output")))
return false;
// check that there is an input node named "input".
if (nnet.GetNodeIndex("input") == -1 ||
!nnet.IsInputNode(nnet.GetNodeIndex("input")))
return false;
// if there was just one input, then it was named
// "input" and everything checks out.
if (NumInputNodes(nnet) == 1)
return true;
// Otherwise, there should be input node with name "input" and one
// should be called "ivector".
return nnet.GetNodeIndex("ivector") != -1 &&
nnet.IsInputNode(nnet.GetNodeIndex("ivector"));
}
void EvaluateComputationRequest(
const Nnet &nnet,
const ComputationRequest &request,
std::vector<std::vector<bool> > *is_computable) {
ComputationGraph graph;
ComputationGraphBuilder builder(nnet, &graph);
builder.Compute(request);
builder.GetComputableInfo(is_computable);
if (GetVerboseLevel() >= 4) {
std::ostringstream graph_pretty;
graph.Print(graph_pretty, nnet.GetNodeNames());
KALDI_VLOG(4) << "Graph is " << graph_pretty.str();
}
}
// This non-exported function is used in ComputeSimpleNnetContext
// to compute the left and right context of the nnet for a particular
// window size and shift-length.
// It returns false if no outputs were computable, meaning the left and
// right context could not be computed. (Normally this means the window
// size is too small).
static bool ComputeSimpleNnetContextForShift(
const Nnet &nnet,
int32 input_start,
int32 window_size,
int32 *left_context,
int32 *right_context) {
int32 input_end = input_start + window_size;
IoSpecification input;
input.name = "input";
IoSpecification output;
output.name = "output";
IoSpecification ivector; // we might or might not use this.
ivector.name = "ivector";
int32 n = rand() % 10;
// in the IoSpecification for now we we will request all the same indexes at
// output that we requested at input.
for (int32 t = input_start; t < input_end; t++) {
input.indexes.push_back(Index(n, t));
output.indexes.push_back(Index(n, t));
}
// most networks will just require the ivector at time t = 0,
// but this might not always be the case, and some might use rounding
// descriptors with the iVector which might require it at an earlier
// frame than the regular input, so we provide the iVector in as wide a range
// as it might possibly be needed.
for (int32 t = input_start - nnet.Modulus(); t < input_end; t++) {
ivector.indexes.push_back(Index(n, t));
}
ComputationRequest request;
request.inputs.push_back(input);
request.outputs.push_back(output);
if (nnet.GetNodeIndex("ivector") != -1)
request.inputs.push_back(ivector);
std::vector<std::vector<bool> > computable;
EvaluateComputationRequest(nnet, request, &computable);
KALDI_ASSERT(computable.size() == 1);
std::vector<bool> &output_ok = computable[0];
std::vector<bool>::iterator iter =
std::find(output_ok.begin(), output_ok.end(), true);
int32 first_ok = iter - output_ok.begin();
int32 first_not_ok = std::find(iter, output_ok.end(), false) -
output_ok.begin();
if (first_ok == window_size || first_not_ok <= first_ok)
return false;
*left_context = first_ok;
*right_context = window_size - first_not_ok;
return true;
}
void ComputeSimpleNnetContext(const Nnet &nnet,
int32 *left_context,
int32 *right_context) {
KALDI_ASSERT(IsSimpleNnet(nnet));
int32 modulus = nnet.Modulus();
// modulus >= 1 is a number such that the network ought to be
// invariant to time shifts (of both the input and output) that
// are a multiple of this number. We need to test all shifts modulo
// this number in case the left and right context vary at all within
// this range.
std::vector<int32> left_contexts(modulus + 1);
std::vector<int32> right_contexts(modulus + 1);
// window_size is a number which needs to be greater than the total context
// of the nnet, else we won't be able to work out the context. Large window
// size will make this code slow, so we start off with small window size, and
// if it isn't enough, we keep doubling it up to a maximum.
int32 window_size = 40, max_window_size = 800;
while (window_size < max_window_size) {
// by going "<= modulus" instead of "< modulus" we do one more computation
// than we really need; it becomes a sanity check.
int32 input_start;
for (input_start = 0; input_start <= modulus; input_start++) {
if (!ComputeSimpleNnetContextForShift(nnet, input_start, window_size,
&(left_contexts[input_start]),
&(right_contexts[input_start])))
break;
}
if (input_start <= modulus) {
// We broke from the loop over 'input_start', which means there was
// a failure in ComputeSimpleNnextContextForShift-- we assume at
// this point that it was because window_size was too small.
window_size *= 2;
continue;
}
KALDI_ASSERT(left_contexts[0] == left_contexts[modulus] &&
"nnet does not have the properties we expect.");
KALDI_ASSERT(right_contexts[0] == right_contexts[modulus] &&
"nnet does not have the properties we expect.");
*left_context =
*std::max_element(left_contexts.begin(), left_contexts.end());
*right_context =
*std::max_element(right_contexts.begin(), right_contexts.end());
// Success.
return;
}
KALDI_ERR << "Failure in ComputeSimpleNnetContext (perhaps not a simple nnet?)";
}
void PerturbParams(BaseFloat stddev,
Nnet *nnet) {
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
if (comp->Properties() & kUpdatableComponent) {
UpdatableComponent *u_comp = dynamic_cast<UpdatableComponent*>(comp);
KALDI_ASSERT(u_comp != NULL);
u_comp->PerturbParams(stddev);
}
}
}
void ComponentDotProducts(const Nnet &nnet1,
const Nnet &nnet2,
VectorBase<BaseFloat> *dot_prod) {
KALDI_ASSERT(nnet1.NumComponents() == nnet2.NumComponents());
int32 updatable_c = 0;
for (int32 c = 0; c < nnet1.NumComponents(); c++) {
const Component *comp1 = nnet1.GetComponent(c),
*comp2 = nnet2.GetComponent(c);
if (comp1->Properties() & kUpdatableComponent) {
const UpdatableComponent
*u_comp1 = dynamic_cast<const UpdatableComponent*>(comp1),
*u_comp2 = dynamic_cast<const UpdatableComponent*>(comp2);
KALDI_ASSERT(u_comp1 != NULL && u_comp2 != NULL);
dot_prod->Data()[updatable_c] = u_comp1->DotProduct(*u_comp2);
updatable_c++;
}
}
KALDI_ASSERT(updatable_c == dot_prod->Dim());
}
std::string PrintVectorPerUpdatableComponent(const Nnet &nnet,
const VectorBase<BaseFloat> &vec) {
std::ostringstream os;
os << "[ ";
KALDI_ASSERT(NumUpdatableComponents(nnet) == vec.Dim());
int32 updatable_c = 0;
for (int32 c = 0; c < nnet.NumComponents(); c++) {
const Component *comp = nnet.GetComponent(c);
if (comp->Properties() & kUpdatableComponent) {
const std::string &component_name = nnet.GetComponentName(c);
os << component_name << ':' << vec(updatable_c) << ' ';
updatable_c++;
}
}
KALDI_ASSERT(updatable_c == vec.Dim());
os << ']';
return os.str();
}
BaseFloat DotProduct(const Nnet &nnet1,
const Nnet &nnet2) {
KALDI_ASSERT(nnet1.NumComponents() == nnet2.NumComponents());
BaseFloat ans = 0.0;
for (int32 c = 0; c < nnet1.NumComponents(); c++) {
const Component *comp1 = nnet1.GetComponent(c),
*comp2 = nnet2.GetComponent(c);
if (comp1->Properties() & kUpdatableComponent) {
const UpdatableComponent
*u_comp1 = dynamic_cast<const UpdatableComponent*>(comp1),
*u_comp2 = dynamic_cast<const UpdatableComponent*>(comp2);
KALDI_ASSERT(u_comp1 != NULL && u_comp2 != NULL);
ans += u_comp1->DotProduct(*u_comp2);
}
}
return ans;
}
void ZeroComponentStats(Nnet *nnet) {
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
comp->ZeroStats(); // for some components, this won't do anything.
}
}
void SetLearningRate(BaseFloat learning_rate,
Nnet *nnet) {
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
if (comp->Properties() & kUpdatableComponent) {
// For now all updatable components inherit from class UpdatableComponent.
// If that changes in future, we will change this code.
UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(comp);
if (uc == NULL)
KALDI_ERR << "Updatable component does not inherit from class "
"UpdatableComponent; change this code.";
uc->SetUnderlyingLearningRate(learning_rate);
}
}
}
void SetNnetAsGradient(Nnet *nnet) {
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
if (comp->Properties() & kUpdatableComponent) {
UpdatableComponent *u_comp = dynamic_cast<UpdatableComponent*>(comp);
KALDI_ASSERT(u_comp != NULL);
u_comp->SetAsGradient();
}
}
}
void ScaleNnet(BaseFloat scale, Nnet *nnet) {
if (scale == 1.0) return;
else {
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
comp->Scale(scale);
}
}
}
void AddNnetComponents(const Nnet &src, const Vector<BaseFloat> &alphas,
BaseFloat scale, Nnet *dest) {
if (src.NumComponents() != dest->NumComponents())
KALDI_ERR << "Trying to add incompatible nnets.";
int32 i = 0;
for (int32 c = 0; c < src.NumComponents(); c++) {
const Component *src_comp = src.GetComponent(c);
Component *dest_comp = dest->GetComponent(c);
if (src_comp->Properties() & kUpdatableComponent) {
// For now all updatable components inherit from class UpdatableComponent.
// If that changes in future, we will change this code.
const UpdatableComponent *src_uc =
dynamic_cast<const UpdatableComponent*>(src_comp);
UpdatableComponent *dest_uc =
dynamic_cast<UpdatableComponent*>(dest_comp);
if (src_uc == NULL || dest_uc == NULL)
KALDI_ERR << "Updatable component does not inherit from class "
"UpdatableComponent; change this code.";
KALDI_ASSERT(i < alphas.Dim());
dest_uc->Add(alphas(i++), *src_uc);
} else { // add stored stats
dest_comp->Add(scale, *src_comp);
}
}
KALDI_ASSERT(i == alphas.Dim());
}
void AddNnet(const Nnet &src, BaseFloat alpha, Nnet *dest) {
if (src.NumComponents() != dest->NumComponents())
KALDI_ERR << "Trying to add incompatible nnets.";
for (int32 c = 0; c < src.NumComponents(); c++) {
const Component *src_comp = src.GetComponent(c);
Component *dest_comp = dest->GetComponent(c);
dest_comp->Add(alpha, *src_comp);
}
}
int32 NumParameters(const Nnet &src) {
int32 ans = 0;
for (int32 c = 0; c < src.NumComponents(); c++) {
const Component *comp = src.GetComponent(c);
if (comp->Properties() & kUpdatableComponent) {
// For now all updatable components inherit from class UpdatableComponent.
// If that changes in future, we will change this code.
const UpdatableComponent *uc =
dynamic_cast<const UpdatableComponent*>(comp);
if (uc == NULL)
KALDI_ERR << "Updatable component does not inherit from class "
"UpdatableComponent; change this code.";
ans += uc->NumParameters();
}
}
return ans;
}
void VectorizeNnet(const Nnet &src,
VectorBase<BaseFloat> *parameters) {
KALDI_ASSERT(parameters->Dim() == NumParameters(src));
int32 dim_offset = 0;
for (int32 c = 0; c < src.NumComponents(); c++) {
const Component *comp = src.GetComponent(c);
if (comp->Properties() & kUpdatableComponent) {
// For now all updatable components inherit from class UpdatableComponent.
// If that changes in future, we will change this code.
const UpdatableComponent *uc =
dynamic_cast<const UpdatableComponent*>(comp);
if (uc == NULL)
KALDI_ERR << "Updatable component does not inherit from class "
"UpdatableComponent; change this code.";
int32 this_dim = uc->NumParameters();
SubVector<BaseFloat> this_part(*parameters, dim_offset, this_dim);
uc->Vectorize(&this_part);
dim_offset += this_dim;
}
}
}
void UnVectorizeNnet(const VectorBase<BaseFloat> ¶meters,
Nnet *dest) {
KALDI_ASSERT(parameters.Dim() == NumParameters(*dest));
int32 dim_offset = 0;
for (int32 c = 0; c < dest->NumComponents(); c++) {
Component *comp = dest->GetComponent(c);
if (comp->Properties() & kUpdatableComponent) {
// For now all updatable components inherit from class UpdatableComponent.
// If that changes in future, we will change this code.
UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(comp);
if (uc == NULL)
KALDI_ERR << "Updatable component does not inherit from class "
"UpdatableComponent; change this code.";
int32 this_dim = uc->NumParameters();
const SubVector<BaseFloat> this_part(parameters, dim_offset, this_dim);
uc->UnVectorize(this_part);
dim_offset += this_dim;
}
}
}
int32 NumUpdatableComponents(const Nnet &dest) {
int32 ans = 0;
for (int32 c = 0; c < dest.NumComponents(); c++) {
const Component *comp = dest.GetComponent(c);
if (comp->Properties() & kUpdatableComponent)
ans++;
}
return ans;
}
void FreezeNaturalGradient(bool freeze, Nnet *nnet) {
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
if (comp->Properties() & kUpdatableComponent) {
// For now all updatable components inherit from class UpdatableComponent.
// If that changes in future, we will change this code.
UpdatableComponent *uc = dynamic_cast<UpdatableComponent*>(comp);
if (uc == NULL)
KALDI_ERR << "Updatable component does not inherit from class "
"UpdatableComponent; change this code.";
uc->FreezeNaturalGradient(freeze);
}
}
}
void ConvertRepeatedToBlockAffine(CompositeComponent *c_component) {
for(int32 i = 0; i < c_component->NumComponents(); i++) {
const Component *c = c_component->GetComponent(i);
KALDI_ASSERT(c->Type() != "CompositeComponent" &&
"Nesting CompositeComponent within CompositeComponent is not allowed.\n"
"(We may change this as more complicated components are introduced.)");
if(c->Type() == "RepeatedAffineComponent" ||
c->Type() == "NaturalGradientRepeatedAffineComponent") {
// N.B.: NaturalGradientRepeatedAffineComponent is a subclass of
// RepeatedAffineComponent.
const RepeatedAffineComponent *rac =
dynamic_cast<const RepeatedAffineComponent*>(c);
KALDI_ASSERT(rac != NULL);
BlockAffineComponent *bac = new BlockAffineComponent(*rac);
// following call deletes rac
c_component->SetComponent(i, bac);
}
}
}
void ConvertRepeatedToBlockAffine(Nnet *nnet) {
for(int32 i = 0; i < nnet->NumComponents(); i++) {
const Component *const_c = nnet->GetComponent(i);
if(const_c->Type() == "RepeatedAffineComponent" ||
const_c->Type() == "NaturalGradientRepeatedAffineComponent") {
// N.B.: NaturalGradientRepeatedAffineComponent is a subclass of
// RepeatedAffineComponent.
const RepeatedAffineComponent *rac =
dynamic_cast<const RepeatedAffineComponent*>(const_c);
KALDI_ASSERT(rac != NULL);
BlockAffineComponent *bac = new BlockAffineComponent(*rac);
// following call deletes rac
nnet->SetComponent(i, bac);
} else if (const_c->Type() == "CompositeComponent") {
// We must modify the composite component, so we use the
// non-const GetComponent() call here.
Component *c = nnet->GetComponent(i);
CompositeComponent *cc = dynamic_cast<CompositeComponent*>(c);
KALDI_ASSERT(cc != NULL);
ConvertRepeatedToBlockAffine(cc);
}
}
}
std::string NnetInfo(const Nnet &nnet) {
std::ostringstream ostr;
if (IsSimpleNnet(nnet)) {
int32 left_context, right_context;
// this call will crash if the nnet is not 'simple'.
ComputeSimpleNnetContext(nnet, &left_context, &right_context);
ostr << "left-context: " << left_context << "\n";
ostr << "right-context: " << right_context << "\n";
}
ostr << "input-dim: " << nnet.InputDim("input") << "\n";
ostr << "ivector-dim: " << nnet.InputDim("ivector") << "\n";
ostr << "output-dim: " << nnet.OutputDim("output") << "\n";
ostr << "# Nnet info follows.\n";
ostr << nnet.Info();
return ostr.str();
}
void SetDropoutProportion(BaseFloat dropout_proportion,
Nnet *nnet) {
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
DropoutComponent *dc = dynamic_cast<DropoutComponent*>(comp);
if (dc != NULL)
dc->SetDropoutProportion(dropout_proportion);
DropoutMaskComponent *mc =
dynamic_cast<DropoutMaskComponent*>(nnet->GetComponent(c));
if (mc != NULL)
mc->SetDropoutProportion(dropout_proportion);
GeneralDropoutComponent *gdc =
dynamic_cast<GeneralDropoutComponent*>(nnet->GetComponent(c));
if (gdc != NULL)
gdc->SetDropoutProportion(dropout_proportion);
}
}
bool HasBatchnorm(const Nnet &nnet) {
for (int32 c = 0; c < nnet.NumComponents(); c++) {
const Component *comp = nnet.GetComponent(c);
if (dynamic_cast<const BatchNormComponent*>(comp) != NULL)
return true;
}
return false;
}
void ScaleBatchnormStats(BaseFloat batchnorm_stats_scale,
Nnet *nnet) {
KALDI_ASSERT(batchnorm_stats_scale >= 0.0 && batchnorm_stats_scale <= 1.0);
if (batchnorm_stats_scale == 1.0)
return;
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
BatchNormComponent *bc = dynamic_cast<BatchNormComponent*>(comp);
if (bc != NULL)
bc->Scale(batchnorm_stats_scale);
}
}
void RecomputeStats(const std::vector<NnetExample> &egs, Nnet *nnet) {
KALDI_LOG << "Recomputing stats on nnet (affects batch-norm)";
ZeroComponentStats(nnet);
NnetComputeProbOptions opts;
opts.store_component_stats = true;
NnetComputeProb prob_computer(opts, nnet);
for (size_t i = 0; i < egs.size(); i++)
prob_computer.Compute(egs[i]);
prob_computer.PrintTotalStats();
KALDI_LOG << "Done recomputing stats.";
}
void SetBatchnormTestMode(bool test_mode, Nnet *nnet) {
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
BatchNormComponent *bc = dynamic_cast<BatchNormComponent*>(comp);
if (bc != NULL)
bc->SetTestMode(test_mode);
}
}
void SetDropoutTestMode(bool test_mode, Nnet *nnet) {
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
RandomComponent *rc = dynamic_cast<RandomComponent*>(comp);
if (rc != NULL)
rc->SetTestMode(test_mode);
}
}
void ResetGenerators(Nnet *nnet){
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
RandomComponent *rc = dynamic_cast<RandomComponent*>(comp);
if (rc != NULL)
rc->ResetGenerator();
}
}
void FindOrphanComponents(const Nnet &nnet, std::vector<int32> *components) {
int32 num_components = nnet.NumComponents(), num_nodes = nnet.NumNodes();
std::vector<bool> is_used(num_components, false);
for (int32 i = 0; i < num_nodes; i++) {
if (nnet.IsComponentNode(i)) {
int32 c = nnet.GetNode(i).u.component_index;
KALDI_ASSERT(c >= 0 && c < num_components);
is_used[c] = true;
}
}
components->clear();
for (int32 i = 0; i < num_components; i++)
if (!is_used[i])
components->push_back(i);
}
void FindOrphanNodes(const Nnet &nnet, std::vector<int32> *nodes) {
std::vector<std::vector<int32> > depend_on_graph, dependency_graph;
NnetToDirectedGraph(nnet, &depend_on_graph);
// depend_on_graph[i] is a list of all the nodes that depend on i.
ComputeGraphTranspose(depend_on_graph, &dependency_graph);
// dependency_graph[i] is a list of all the nodes that i depends on,
// to be computed.
// Find all nodes required to produce the outputs.
int32 num_nodes = nnet.NumNodes();
assert(num_nodes == static_cast<int32>(dependency_graph.size()));
std::vector<bool> node_is_required(num_nodes, false);
std::vector<int32> queue;
for (int32 i = 0; i < num_nodes; i++) {
if (nnet.IsOutputNode(i))
queue.push_back(i);
}
while (!queue.empty()) {
int32 i = queue.back();
queue.pop_back();
if (!node_is_required[i]) {
node_is_required[i] = true;
for (size_t j = 0; j < dependency_graph[i].size(); j++)
queue.push_back(dependency_graph[i][j]);
}
}
nodes->clear();
for (int32 i = 0; i < num_nodes; i++) {
if (!node_is_required[i])
nodes->push_back(i);
}
}
// Parameters used in applying SVD:
// 1. Energy threshold : For each Affine weights layer in the original baseline nnet3 model,
// we perform SVD based factoring of the weights matrix of the layer,
// into a singular values (left diagonal) matrix, and two Eigen matrices.
//
// SVD : Wx = UEV, U,V are Eigen matrices, and E is the singularity matrix)
//
// We take the center matrix E, and consider only the Singular values which contribute
// to (Energy-threshold) times the total Energy of Singularity parameters.
// These Singularity parameters are actually sorted in descending order and lower
// values are pruned out until the Total energy (Sum of squares) of the pruned set
// of parameters is just above (Energy-threshold * Total init energy). The values which
// are pruned away are replaced with 0 in the Singularity matrix
// and the Weights matrix after SVD is derived with shrinked dimensions.
//
// 2. Shrinkage-threshold : If the Shrinkage ratio of the SVD refactored Weights matrix
// is higher than Shrinkage-threshold for any of the Tdnn layers,
// the SVD process is aborted for that particular Affine weights layer.
//
// this class implements the internals of the edit directive 'apply-svd'.
class SvdApplier {
public:
SvdApplier(const std::string component_name_pattern,
int32 bottleneck_dim,
BaseFloat energy_threshold,
BaseFloat shrinkage_threshold,
Nnet *nnet): nnet_(nnet),
bottleneck_dim_(bottleneck_dim),
energy_threshold_(energy_threshold),
shrinkage_threshold_(shrinkage_threshold),
component_name_pattern_(component_name_pattern) { }
void ApplySvd() {
DecomposeComponents();
if (!modified_component_info_.empty())
ModifyTopology();
KALDI_LOG << "Decomposed " << modified_component_info_.size()
<< " components with SVD dimension " << bottleneck_dim_;
}
private:
// This function finds components to decompose and decomposes them, adding _a and
// _b versions of those components to the nnet while not removing the original
// ones. Does not affect the graph topology.
void DecomposeComponents() {
int32 num_components = nnet_->NumComponents();
modification_index_.resize(num_components, -1);
for (int32 c = 0; c < num_components; c++) {
Component *component = nnet_->GetComponent(c);
std::string component_name = nnet_->GetComponentName(c);
if (NameMatchesPattern(component_name.c_str(),
component_name_pattern_.c_str())) {
AffineComponent *affine = dynamic_cast<AffineComponent*>(component);
if (affine == NULL) {
KALDI_WARN << "Not decomposing component " << component_name
<< " as it is not an AffineComponent.";
continue;
}
int32 input_dim = affine->InputDim(),
output_dim = affine->OutputDim();
if (input_dim <= bottleneck_dim_ || output_dim <= bottleneck_dim_) {
KALDI_WARN << "Not decomposing component " << component_name
<< " with SVD to rank " << bottleneck_dim_
<< " because its dimension is " << input_dim
<< " -> " << output_dim;
continue;
}
Component *component_a = NULL, *component_b = NULL;
if (DecomposeComponent(component_name, *affine, &component_a, &component_b)) {
size_t n = modified_component_info_.size();
modification_index_[c] = n;
modified_component_info_.resize(n + 1);
ModifiedComponentInfo &info = modified_component_info_[n];
info.component_index = c;
info.component_name = component_name;
info.component_name_a = component_name + "_a";
info.component_name_b = component_name + "_b";
if (nnet_->GetComponentIndex(info.component_name_a) >= 0)
KALDI_ERR << "Neural network already has a component named "
<< info.component_name_a;
if (nnet_->GetComponentIndex(info.component_name_b) >= 0)
KALDI_ERR << "Neural network already has a component named "
<< info.component_name_b;
info.component_a_index = nnet_->AddComponent(info.component_name_a,
component_a);
info.component_b_index = nnet_->AddComponent(info.component_name_b,
component_b);
}
}
}
KALDI_LOG << "Converted " << modified_component_info_.size()
<< " components to FixedAffineComponent.";
}
// This function finds the minimum index of
// the Descending order sorted [input_vector],
// over a range of indices from [lower] to [upper] index,
// for which the sum of elements upto the found min. index is greater
// than [min_val].
// We add one to this index to return the reduced dimension value.
int32 GetReducedDimension(const Vector<BaseFloat> &input_vector,
int32 lower,
int32 upper,
BaseFloat min_val) {
BaseFloat sum = 0;
int32 i = 0;
for (i = lower; i <= upper; i++) {
sum = sum + input_vector(i);
if (sum >= min_val) break;
}
return (i+1);
}
// Here we perform SVD based refactorig of an input Affine component.
// After applying SVD , we sort the Singularity values in descending order,
// and take the subset of values which contribute to energy_threshold times
// total original sum of squared singular values, and then refactor the Affine
// component using only these selected singular values, thus making the bottleneck
// dim of the refactored Affine layer equal to the no. of Singular values selected.
// This function returs false if the shrinkage ratio of the total no. of parameters,
// after the above SVD based refactoring, is greater than shrinkage threshold.
//
bool DecomposeComponent(const std::string &component_name,
const AffineComponent &affine,
Component **component_a_out,
Component **component_b_out) {
int32 input_dim = affine.InputDim(), output_dim = affine.OutputDim();
Matrix<BaseFloat> linear_params(affine.LinearParams());
Vector<BaseFloat> bias_params(affine.BiasParams());
int32 middle_dim = std::min<int32>(input_dim, output_dim);
// note: 'linear_params' is of dimension output_dim by input_dim.
Vector<BaseFloat> s(middle_dim);
Matrix<BaseFloat> A(middle_dim, input_dim),
B(output_dim, middle_dim);
linear_params.Svd(&s, &B, &A);
// make sure the singular values are sorted from greatest to least value.
SortSvd(&s, &B, &A);
Vector<BaseFloat> s2(s.Dim());
s2.AddVec2(1.0, s);
BaseFloat s2_sum_orig = s2.Sum();
KALDI_ASSERT(energy_threshold_ < 1);
KALDI_ASSERT(shrinkage_threshold_ < 1);
if (energy_threshold_ > 0) {
BaseFloat min_singular_sum = energy_threshold_ * s2_sum_orig;
bottleneck_dim_ = GetReducedDimension(s2, 0, s2.Dim()-1, min_singular_sum);
}
SubVector<BaseFloat> this_part(s2, 0, bottleneck_dim_);
BaseFloat s2_sum_reduced = this_part.Sum();
BaseFloat shrinkage_ratio =
static_cast<BaseFloat>(bottleneck_dim_ * (input_dim+output_dim))
/ static_cast<BaseFloat>(input_dim * output_dim);
if (shrinkage_ratio > shrinkage_threshold_) {
KALDI_LOG << "Shrinkage ratio " << shrinkage_ratio
<< " greater than threshold : " << shrinkage_threshold_
<< " Skipping SVD for this layer.";
return false;
}
s.Resize(bottleneck_dim_, kCopyData);
A.Resize(bottleneck_dim_, input_dim, kCopyData);
B.Resize(output_dim, bottleneck_dim_, kCopyData);
KALDI_LOG << "For component " << component_name
<< " singular value squared sum changed by "
<< (s2_sum_orig - s2_sum_reduced)
<< " (from " << s2_sum_orig << " to " << s2_sum_reduced << ")";
KALDI_LOG << "For component " << component_name
<< " dimension reduced from "
<< " (" << input_dim << "," << output_dim << ")"
<< " to [(" << input_dim << "," << bottleneck_dim_
<< "), (" << bottleneck_dim_ << "," << output_dim <<")]";
KALDI_LOG << "shrinkage ratio : " << shrinkage_ratio;
// we'll divide the singular values equally between the two
// parameter matrices.
s.ApplyPow(0.5);
A.MulRowsVec(s);
B.MulColsVec(s);
CuMatrix<BaseFloat> A_cuda(A), B_cuda(B);
CuVector<BaseFloat> bias_params_cuda(bias_params);
LinearComponent *component_a = new LinearComponent(A_cuda);
NaturalGradientAffineComponent *component_b =
new NaturalGradientAffineComponent(B_cuda, bias_params_cuda);
// set the learning rates, max-change, and so on.
component_a->SetUpdatableConfigs(affine);
component_b->SetUpdatableConfigs(affine);
*component_a_out = component_a;
*component_b_out = component_b;
return true;
}
// This function modifies the topology of the neural network, splitting
// up the components we're modifying into two parts.
// Suppose we have something like:
// component-node name=some_node component=some_component input=
// nodes_to_modify will be a list of component-node indexes that we
// need to split into two. These will be nodes like
// component-node name=component_node_name component=component_name input=xxx
// where 'component_name' is one of the components that we're splitting.
// node_names_modified is nnet_->node_names_ except with, for the nodes that
// we are splitting in two, "some_node_name" replaced with
// "some_node_name_b" (the second of the two split nodes).
void ModifyTopology() {
std::set<int32> nodes_to_modify;
std::vector<std::string> node_names_orig = nnet_->GetNodeNames(),
node_names_modified = node_names_orig;
// The following loop sets up 'nodes_to_modify' and 'node_names_modified'.
for (int32 n = 0; n < nnet_->NumNodes(); n++) {
if (nnet_->IsComponentNode(n)) {
NetworkNode &node = nnet_->GetNode(n);
int32 component_index = node.u.component_index,
modification_index = modification_index_[component_index];
if (modification_index >= 0) {
// This is a component-node for one of the components that we're
// splitting in two.
nodes_to_modify.insert(n);
std::string node_name = node_names_orig[n],
node_name_b = node_name + "_b";
node_names_modified[n] = node_name_b;
}
}
}
// config_os is a stream to which we are printing lines that we'll later
// read using nnet_->ReadConfig().
std::ostringstream config_os;
// The following loop writes to 'config_os'. The the code is modified from
// the private function Nnet::GetAsConfigLine(), and from
// Nnet::GetConfigLines().
for (int32 n = 0; n < nnet_->NumNodes(); n++) {
if (nnet_->IsComponentInputNode(n) || nnet_->IsInputNode(n)) {
// component-input descriptor nodes aren't handled separately from their
// associated components (we deal with them along with their
// component-node); and input-nodes won't be affected so we don't have
// to print anything.
continue;
}
const NetworkNode &node = nnet_->GetNode(n);
int32 c = node.u.component_index; // 'c' will only be meaningful if the
// node is a component-node.
std::string node_name = node_names_orig[n];
if (node.node_type == kComponent && modification_index_[c] >= 0) {
ModifiedComponentInfo &info = modified_component_info_[
modification_index_[c]];
std::string node_name_a = node_name + "_a",
node_name_b = node_name + "_b";
// we print two component-nodes, the "a" an "b". The original
// one will later be removed when we call RemoveOrphanNodes().
config_os << "component-node name=" << node_name_a << " component="
<< info.component_name_a << " input=";
nnet_->GetNode(n-1).descriptor.WriteConfig(config_os, node_names_modified);
config_os << "\n";
config_os << "component-node name=" << node_name_b << " component="
<< info.component_name_b << " input=" << node_name_a << "\n";
} else {
// This code is modified from Nnet::GetAsConfigLine(). The key difference
// is that we're using node_names_modified, which will replace all the
// nodes we're splitting with their "b" versions.
switch (node.node_type) {
case kDescriptor:
// assert that it's an output-descriptor, not one describing the input to
// a component-node.
KALDI_ASSERT(nnet_->IsOutputNode(n));
config_os << "output-node name=" << node_name << " input=";
node.descriptor.WriteConfig(config_os, node_names_modified);
config_os << " objective=" << (node.u.objective_type == kLinear ?
"linear" : "quadratic");
break;
case kComponent:
config_os << "component-node name=" << node_name << " component="
<< nnet_->GetComponentName(node.u.component_index)
<< " input=";
nnet_->GetNode(n-1).descriptor.WriteConfig(config_os,
node_names_modified);
break;
case kDimRange:
config_os << "dim-range-node name=" << node_name << " input-node="
<< node_names_modified[node.u.node_index]
<< " dim-offset=" << node.dim_offset
<< " dim=" << node.dim;
break;
default:
KALDI_ERR << "Unexpected node type.";
}
config_os << "\n";
}
}
std::istringstream config_is(config_os.str());
nnet_->ReadConfig(config_is);
nnet_->RemoveOrphanNodes();
nnet_->RemoveOrphanComponents();
}
// modification_index_ is a vector with dimension equal to the number of
// components nnet_ had at entry. For each component that we are decomposing,
// it contains an index >= 0 into the 'component_info_' vector; for each
// component that we are not decomposing, it contains -1.
// with SVD.
std::vector<int32> modification_index_;
struct ModifiedComponentInfo {
int32 component_index; // Index of the component we are modifying.
std::string component_name; // The original name of the component,
// e.g. "some_component".
std::string component_name_a; // The original name of the component, plus "_a"
// e.g. "some_component_a".
std::string component_name_b; // The original name of the component, plus "_b"
// e.g. "some_component_b".
int32 component_a_index; // component-index of the left part of the
// decomposed component, which will have a name
// like "some_component_a".
int32 component_b_index; // component-index of the right part of the
// decomposed component, which will have a name
// like "some_component_b".
};
std::vector<ModifiedComponentInfo> modified_component_info_;
Nnet *nnet_;
int32 bottleneck_dim_;
BaseFloat energy_threshold_;
BaseFloat shrinkage_threshold_;
std::string component_name_pattern_;
};
/*
Does an update that moves M closer to being a (matrix with orthonormal rows)
times 'scale'. Note: this will diverge if we start off with singular values
too far from 'scale'.
This function requires 'scale' to be nonzero. If 'scale' is negative, then it
will be set internally to the value that ensures the change in M is orthogonal to
M (viewed as a vector).
*/
void ConstrainOrthonormalInternal(BaseFloat scale, CuMatrixBase<BaseFloat> *M) {
KALDI_ASSERT(scale != 0.0);
// We'd like to enforce the rows of M to be orthonormal.
// define P = M M^T. If P is unit then M has orthonormal rows.
// We actually want P to equal scale^2 * I, so that M's rows are
// orthogonal with 2-norms equal to 'scale'.
// We (notionally) add to the objective function, the value
// -alpha times the sum of squared elements of Q = (P - scale^2 * I).
int32 rows = M->NumRows(), cols = M->NumCols();
CuMatrix<BaseFloat> M_update(rows, cols);
CuMatrix<BaseFloat> P(rows, rows);
P.SymAddMat2(1.0, *M, kNoTrans, 0.0);
P.CopyLowerToUpper();
// The 'update_speed' is a constant that determines how fast we approach a
// matrix with the desired properties (larger -> faster). Larger values will
// update faster but will be more prone to instability. 0.125 (1/8) is the
// value that gives us the fastest possible convergence when we are already
// close to be a semi-orthogonal matrix (in fact, it will lead to quadratic
// convergence).
// See http://www.danielpovey.com/files/2018_interspeech_tdnnf.pdf
// for more details.
BaseFloat update_speed = 0.125;
bool floating_scale = (scale < 0.0);
if (floating_scale) {
// This (letting the scale "float") is described in Sec. 2.3 of
// http://www.danielpovey.com/files/2018_interspeech_tdnnf.pdf,
// where 'scale' here is written 'alpha' in the paper.
//
// We pick the scale that will give us an update to M that is
// orthogonal to M (viewed as a vector): i.e., if we're doing
// an update M := M + X, then we want to have tr(M X^T) == 0.
// The following formula is what gives us that.
// With P = M M^T, our update formula is doing to be:
// M := M + (-4 * alpha * (P - scale^2 I) * M).
// (The math below explains this update formula; for now, it's
// best to view it as an established fact).
// So X (the change in M) is -4 * alpha * (P - scale^2 I) * M,
// where alpha == update_speed / scale^2.
// We want tr(M X^T) == 0. First, forget the -4*alpha, because
// we don't care about constant factors. So we want:
// tr(M * M^T * (P - scale^2 I)) == 0.
// Since M M^T == P, that means:
// tr(P^2 - scale^2 P) == 0,
// or scale^2 = tr(P^2) / tr(P).
// Note: P is symmetric so it doesn't matter whether we use tr(P P) or
// tr(P^T P); we use tr(P^T P) because I believe it's faster to compute.
BaseFloat trace_P = P.Trace(), trace_P_P = TraceMatMat(P, P, kTrans);
scale = std::sqrt(trace_P_P / trace_P);
// The following is a tweak to avoid divergence when the eigenvalues aren't
// close to being the same. trace_P is the sum of eigenvalues of P, and
// trace_P_P is the sum-square of eigenvalues of P. Treat trace_P as a sum
// of positive values, and trace_P_P as their sumsq. Then mean = trace_P /
// dim, and trace_P_P cannot be less than dim * (trace_P / dim)^2,
// i.e. trace_P_P >= trace_P^2 / dim. If ratio = trace_P_P * dim /
// trace_P^2, then ratio >= 1.0, and the excess above 1.0 is a measure of
// how far we are from convergence. If we're far from convergence, we make
// the learning rate slower to reduce the risk of divergence, since the
// update may not be stable for starting points far from equilibrium.
BaseFloat ratio = (trace_P_P * P.NumRows() / (trace_P * trace_P));
KALDI_ASSERT(ratio > 0.999);
if (ratio > 1.02) {
update_speed *= 0.5; // Slow down the update speed to reduce the risk of divergence.
if (ratio > 1.1) update_speed *= 0.5; // Slow it down even more.
}
}
P.AddToDiag(-1.0 * scale * scale);
// We may want to un-comment the following code block later on if we have a
// problem with instability in setups with a non-floating orthonormal
// constraint.
/*
if (!floating_scale) {
// This is analogous to the stuff with 'ratio' above, but when we don't have
// a floating scale. It reduces the chances of divergence when we have
// a bad initialization.
BaseFloat error = P.FrobeniusNorm(),
error_proportion = error * error / P.NumRows();
// 'error_proportion' is the sumsq of elements in (P - I) divided by the
// sumsq of elements of I. It should be much less than one (i.e. close to
// zero) if the error is small.
if (error_proportion > 0.02) {
update_speed *= 0.5;
if (error_proportion > 0.1)
update_speed *= 0.5;
}
}
*/
if (GetVerboseLevel() >= 1) {
BaseFloat error = P.FrobeniusNorm();
KALDI_VLOG(2) << "Error in orthogonality is " << error;
}
// see Sec. 2.2 of http://www.danielpovey.com/files/2018_interspeech_tdnnf.pdf
// for explanation of the 1/(scale*scale) factor, but there is a difference in
// notation; 'scale' here corresponds to 'alpha' in the paper, and
// 'update_speed' corresponds to 'nu' in the paper.
BaseFloat alpha = update_speed / (scale * scale);
// At this point, the matrix P contains what, in the math, would be Q =
// P-scale^2*I. The derivative of the objective function w.r.t. an element q(i,j)
// of Q is now equal to -2*alpha*q(i,j), i.e. we could write q_deriv(i,j)
// = -2*alpha*q(i,j) This is also the derivative of the objective function
// w.r.t. p(i,j): i.e. p_deriv(i,j) = -2*alpha*q(i,j).
// Suppose we have define this matrix as 'P_deriv'.
// The derivative of the objective w.r.t M equals
// 2 * P_deriv * M, which equals -4*alpha*(P-scale^2*I)*M.
// (Currently the matrix P contains what, in the math, is P-scale^2*I).
M_update.AddMatMat(-4.0 * alpha, P, kNoTrans, *M, kNoTrans, 0.0);
M->AddMat(1.0, M_update);
}
/**
This function, to be called after processing every minibatch, is responsible
for enforcing the orthogonality constraint for any components of type
LinearComponent or inheriting from AffineComponent that have the
"orthonormal_constraint" value set.
*/
void ConstrainOrthonormal(Nnet *nnet) {
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *component = nnet->GetComponent(c);
CuMatrixBase<BaseFloat> *params = NULL;
BaseFloat orthonormal_constraint = 0.0;
LinearComponent *lc = dynamic_cast<LinearComponent*>(component);
if (lc != NULL && lc->OrthonormalConstraint() != 0.0) {
orthonormal_constraint = lc->OrthonormalConstraint();
params = &(lc->Params());
}
AffineComponent *ac = dynamic_cast<AffineComponent*>(component);
if (ac != NULL && ac->OrthonormalConstraint() != 0.0) {
orthonormal_constraint = ac->OrthonormalConstraint();
params = &(ac->LinearParams());
}
TdnnComponent *tc = dynamic_cast<TdnnComponent*>(component);
if (tc != NULL && tc->OrthonormalConstraint() != 0.0) {
orthonormal_constraint = tc->OrthonormalConstraint();
params = &(tc->LinearParams());
}
if (orthonormal_constraint == 0.0 || RandInt(0, 3) != 0) {
// For efficiency, only do this every 4 or so minibatches-- it won't have
// time stray far from the constraint in between.
continue;
}
int32 rows = params->NumRows(), cols = params->NumCols();
if (rows <= cols) {
ConstrainOrthonormalInternal(orthonormal_constraint, params);
} else {
CuMatrix<BaseFloat> params_trans(*params, kTrans);
ConstrainOrthonormalInternal(orthonormal_constraint, ¶ms_trans);
params->CopyFromMat(params_trans, kTrans);
}
}
}
void ConsolidateMemory(Nnet *nnet) {
#if HAVE_CUDA == 1
if (CuDevice::Instantiate().Enabled()) {
bool print_memory_info = (GetVerboseLevel() >= 1);
if (print_memory_info) {
KALDI_VLOG(1) << "Consolidating memory; will print memory usage before "
"and after consolidating:";
g_cuda_allocator.PrintMemoryUsage();
}
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *comp = nnet->GetComponent(c);
comp->ConsolidateMemory();
}
if (print_memory_info) {
g_cuda_allocator.PrintMemoryUsage();
}
}
#endif
}
// This code has been broken out of ReadEditConfig as it's quite long.
// It implements the internals of the edit directive 'reduce-rank'.
// See also the related direcive 'apply-svd'.
void ReduceRankOfComponents(const std::string component_name_pattern,
int32 rank,
Nnet *nnet) {
int32 num_components_changed = 0;
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *component = nnet->GetComponent(c);
std::string component_name = nnet->GetComponentName(c);
if (NameMatchesPattern(component_name.c_str(),
component_name_pattern.c_str())) {
AffineComponent *affine = dynamic_cast<AffineComponent*>(component);
if (affine == NULL) {
KALDI_WARN << "Not reducing rank of component " << component_name
<< " as it is not an AffineComponent.";
continue;
}
int32 input_dim = affine->InputDim(),
output_dim = affine->OutputDim();
if (input_dim <= rank || output_dim <= rank) {
KALDI_WARN << "Not reducing rank of component " << component_name
<< " with SVD to rank " << rank
<< " because its dimension is " << input_dim
<< " -> " << output_dim;
continue;
}
Matrix<BaseFloat> linear_params(affine->LinearParams());
Vector<BaseFloat> bias_params(affine->BiasParams());
// note: 'linear_params' is of dimension output_dim by input_dim.
int32 middle_dim = std::min<int32>(input_dim, output_dim);
Vector<BaseFloat> s(middle_dim);
Matrix<BaseFloat> U(output_dim, middle_dim),
Vt(middle_dim, input_dim);
linear_params.Svd(&s, &U, &Vt);
// make sure the singular values are sorted from greatest to least value.
SortSvd(&s, &U, &Vt);
BaseFloat s_sum_orig = s.Sum();
s.Resize(rank, kCopyData);
U.Resize(output_dim, rank, kCopyData);
Vt.Resize(rank, input_dim, kCopyData);
BaseFloat s_sum_reduced = s.Sum();
KALDI_LOG << "For component " << component_name
<< " singular value sum changed by reduce-rank command "
<< (s_sum_orig - s_sum_reduced)
<< " (from " << s_sum_orig << " to " << s_sum_reduced << ")";
U.MulColsVec(s);
Matrix<BaseFloat> linear_params_reduced_rank(output_dim, input_dim);
linear_params_reduced_rank.AddMatMat(1.0, U, kNoTrans, Vt, kNoTrans, 0.0);
CuMatrix<BaseFloat> linear_params_reduced_rank_cuda;
linear_params_reduced_rank_cuda.Swap(&linear_params_reduced_rank);
CuVector<BaseFloat> bias_params_cuda;
bias_params_cuda.Swap(&bias_params);
affine->SetParams(bias_params_cuda, linear_params_reduced_rank_cuda);
num_components_changed++;
}
}
KALDI_LOG << "Reduced rank of parameters of " << num_components_changed
<< " components.";
}
void ReadEditConfig(std::istream &edit_config_is, Nnet *nnet) {
std::vector<std::string> lines;
ReadConfigLines(edit_config_is, &lines);
// we process this as a sequence of lines.
std::vector<ConfigLine> config_lines;
ParseConfigLines(lines, &config_lines);
for (size_t i = 0; i < config_lines.size(); i++) {
ConfigLine &config_line = config_lines[i];
const std::string &directive = config_lines[i].FirstToken();
if (directive == "convert-to-fixed-affine") {
std::string name_pattern = "*";
// name_pattern defaults to '*' if none is given. Note: this pattern
// matches names of components, not nodes.
config_line.GetValue("name", &name_pattern);
int32 num_components_changed = 0;
for (int32 c = 0; c < nnet->NumComponents(); c++) {
Component *component = nnet->GetComponent(c);
AffineComponent *affine = NULL;
if (NameMatchesPattern(nnet->GetComponentName(c).c_str(),
name_pattern.c_str()) &&
(affine = dynamic_cast<AffineComponent*>(component))) {
nnet->SetComponent(c, new FixedAffineComponent(*affine));
num_components_changed++;
}
}
KALDI_LOG << "Converted " << num_components_changed
<< " components to FixedAffineComponent.";
} else if (directive == "remove-orphan-nodes") {
bool remove_orphan_inputs = false;
config_line.GetValue("remove-orphan-inputs", &remove_orphan_inputs);
nnet->RemoveOrphanNodes(remove_orphan_inputs);
} else if (directive == "remove-orphan-components") {
nnet->RemoveOrphanComponents();
} else if (directive == "remove-orphans") {
bool remove_orphan_inputs = false;
config_line.GetValue("remove-orphan-inputs", &remove_orphan_inputs);
nnet->RemoveOrphanNodes(remove_orphan_inputs);
nnet->RemoveOrphanComponents();
} else if (directive == "set-learning-rate") {
std::string name_pattern = "*";
// name_pattern defaults to '*' if none is given. This pattern
// matches names of components, not nodes.
config_line.GetValue("name", &name_pattern);
BaseFloat learning_rate = -1;
if (!config_line.GetValue("learning-rate", &learning_rate)) {
KALDI_ERR << "In edits-config, expected learning-rate to be set in line: "
<< config_line.WholeLine();
}
// Note: the learning rate you provide will be multiplied by any
// 'learning-rate-factor' that is defined in the component,
// so if you call SetUnderlyingLearningRate(), the actual learning
// rate (learning_rate_) is set to the value you provide times
// learning_rate_factor_.
UpdatableComponent *component = NULL;
int32 num_learning_rates_set = 0;
for (int32 c = 0; c < nnet->NumComponents(); c++) {
if (NameMatchesPattern(nnet->GetComponentName(c).c_str(),
name_pattern.c_str()) &&
(component =
dynamic_cast<UpdatableComponent*>(nnet->GetComponent(c)))) {
component->SetUnderlyingLearningRate(learning_rate);
num_learning_rates_set++;
}
}
KALDI_LOG << "Set learning rates for " << num_learning_rates_set << " components.";
} else if (directive == "set-learning-rate-factor") {
std::string name_pattern = "*";
// name_pattern defaults to '*' if none is given.
config_line.GetValue("name", &name_pattern);
BaseFloat learning_rate_factor = -1;
if (!config_line.GetValue("learning-rate-factor", &learning_rate_factor)) {
KALDI_ERR << "In edits-config, expected learning-rate-factor to be set in line: "
<< config_line.WholeLine();
}
// Note: the learning_rate_factor_ defined in the component
// sets to the value you provided, so if you call SetUnderlyingLearningRate(),
// the actual learning rate (learning_rate_) is set to the value you provided
// times learning_rate.
UpdatableComponent *component = NULL;
int32 num_learning_rate_factors_set = 0;
for (int32 c = 0; c < nnet->NumComponents(); c++) {
if (NameMatchesPattern(nnet->GetComponentName(c).c_str(),
name_pattern.c_str()) &&
(component =
dynamic_cast<UpdatableComponent*>(nnet->GetComponent(c)))) {
component->SetLearningRateFactor(learning_rate_factor);
num_learning_rate_factors_set++;
}
}
KALDI_LOG << "Set learning rate factors for " << num_learning_rate_factors_set
<< " components.";
} else if (directive == "rename-node") {
// this is a shallow renaming of a node, and it requires that the name used is
// not the name of another node.
std::string old_name, new_name;
if (!config_line.GetValue("old-name", &old_name) ||
!config_line.GetValue("new-name", &new_name) ||
config_line.HasUnusedValues()) {
KALDI_ERR << "In edits-config, could not make sense of this rename-node "
<< "directive (expect old-name=xxx new-name=xxx) "
<< config_line.WholeLine();
}
if (nnet->GetNodeIndex(old_name) < 0)
KALDI_ERR << "Could not rename node from " << old_name << " to "
<< new_name << " because there is no node called "
<< old_name;
// further checks will happen inside SetNodeName().
nnet->SetNodeName(nnet->GetNodeIndex(old_name), new_name);
} else if (directive == "remove-output-nodes") {
// note: after remove-output-nodes you probably want to do 'remove-orphans'.
std::string name_pattern;
if (!config_line.GetValue("name", &name_pattern) ||
config_line.HasUnusedValues())
KALDI_ERR << "In edits-config, could not make sense of "
<< "remove-output-nodes directive: "
<< config_line.WholeLine();
std::vector<int32> nodes_to_remove;
int32 outputs_remaining = 0;
for (int32 n = 0; n < nnet->NumNodes(); n++) {
if (nnet->IsOutputNode(n)) {
if (NameMatchesPattern(nnet->GetNodeName(n).c_str(),
name_pattern.c_str()))
nodes_to_remove.push_back(n);
else
outputs_remaining++;
}
}
KALDI_LOG << "Removing " << nodes_to_remove.size() << " output nodes.";
if (outputs_remaining == 0)
KALDI_ERR << "All outputs were removed.";
nnet->RemoveSomeNodes(nodes_to_remove);
} else if (directive == "set-dropout-proportion") {
std::string name_pattern = "*";
// name_pattern defaults to '*' if none is given. This pattern
// matches names of components, not nodes.
config_line.GetValue("name", &name_pattern);
BaseFloat proportion = -1;
if (!config_line.GetValue("proportion", &proportion)) {
KALDI_ERR << "In edits-config, expected proportion to be set in line: "
<< config_line.WholeLine();
}
int32 num_dropout_proportions_set = 0;
for (int32 c = 0; c < nnet->NumComponents(); c++) {
if (NameMatchesPattern(nnet->GetComponentName(c).c_str(),
name_pattern.c_str())) {
DropoutComponent *dropout_component =
dynamic_cast<DropoutComponent*>(nnet->GetComponent(c));
DropoutMaskComponent *mask_component =
dynamic_cast<DropoutMaskComponent*>(nnet->GetComponent(c));
GeneralDropoutComponent *general_dropout_component =
dynamic_cast<GeneralDropoutComponent*>(nnet->GetComponent(c));
if (dropout_component != NULL) {
dropout_component->SetDropoutProportion(proportion);
num_dropout_proportions_set++;
} else if (mask_component != NULL){
mask_component->SetDropoutProportion(proportion);
num_dropout_proportions_set++;
} else if (general_dropout_component != NULL){
general_dropout_component->SetDropoutProportion(proportion);
num_dropout_proportions_set++;
}
}
}
KALDI_LOG << "Set dropout proportions for "
<< num_dropout_proportions_set << " components.";
} else if (directive == "apply-svd") {
std::string name_pattern;
int32 bottleneck_dim = -1;
BaseFloat energy_threshold = -1;
BaseFloat shrinkage_threshold = 1.0;
config_line.GetValue("bottleneck-dim", &bottleneck_dim);
config_line.GetValue("energy-threshold", &energy_threshold);
config_line.GetValue("shrinkage-threshold", &shrinkage_threshold);
if (!config_line.GetValue("name", &name_pattern))
KALDI_ERR << "Edit directive apply-svd requires 'name' to be specified.";
if (bottleneck_dim <= 0 && energy_threshold <=0)
KALDI_ERR << "Either Bottleneck-dim or energy-threshold "
"must be set in apply-svd command. "
"Range of possible values is (0 1]";
SvdApplier applier(name_pattern, bottleneck_dim,
energy_threshold,
shrinkage_threshold,
nnet);
applier.ApplySvd();
} else if (directive == "reduce-rank") {
std::string name_pattern;
int32 rank = -1;
if (!config_line.GetValue("name", &name_pattern) ||
!config_line.GetValue("rank", &rank))
KALDI_ERR << "Edit directive reduce-rank requires 'name' and "
"'rank' to be specified.";
if (rank <= 0)
KALDI_ERR << "Rank must be positive in reduce-rank command.";
ReduceRankOfComponents(name_pattern, rank, nnet);
} else {
KALDI_ERR << "Directive '" << directive << "' is not currently "
"supported (reading edit-config).";
}
if (config_line.HasUnusedValues()) {
KALDI_ERR << "Could not interpret '" << config_line.UnusedValues()
<< "' in edit config line " << config_line.WholeLine();
}
}
}
/// Returns true if 'nnet' has some kind of recurrency.
bool NnetIsRecurrent(const Nnet &nnet) {
std::vector<std::vector<int32> > graph;
NnetToDirectedGraph(nnet, &graph);
return GraphHasCycles(graph);
}
class ModelCollapser {
public:
ModelCollapser(const CollapseModelConfig &config,
Nnet *nnet):
config_(config), nnet_(nnet) { }
void Collapse() {
bool changed = true;
int32 num_nodes = nnet_->NumNodes(),
num_iters = 0;
int32 num_components1 = nnet_->NumComponents();
for (; changed; num_iters++) {
changed = false;
for (int32 n = 0; n < num_nodes; n++)
if (OptimizeNode(n))
changed = true;
// we shouldn't iterate more than a couple of times.
if (num_iters >= 10)
KALDI_ERR << "Something went wrong collapsing model.";
}
int32 num_components2 = nnet_->NumComponents();
nnet_->RemoveOrphanNodes();
nnet_->RemoveOrphanComponents();
int32 num_components3 = nnet_->NumComponents();
if (num_components2 != num_components1 ||
num_components3 != num_components2)
KALDI_LOG << "Added " << (num_components2 - num_components1)
<< " components, removed "
<< (num_components2 - num_components3);
}
private:
/**
This function tries to collapse two successive components, where
the component 'component_index1' appears as the input of 'component_index2'.
If the two components can be collapsed in that way, it returns the index
of a combined component.
Note: in addition to the two components simply being chained together, this
function supports the case where different time-offsets of the first
component are appendend together as the input of the second component.
So the input-dim of the second component may be a multiple of
the output-dim of the first component.
The function returns the component-index of a (newly created or existing)
component that combines both of these components, if it's possible to
combine them; or it returns -1 if it's not possible.
*/
int32 CollapseComponents(int32 component_index1,
int32 component_index2) {
int32 ans;
if (config_.collapse_dropout &&
(ans = CollapseComponentsDropout(component_index1,
component_index2)) != -1)
return ans;
if (config_.collapse_batchnorm &&
(ans = CollapseComponentsBatchnorm(component_index1,
component_index2)) != -1)
return ans;
if (config_.collapse_affine &&
(ans = CollapseComponentsAffine(component_index1,
component_index2)) != -1)
return ans;
if (config_.collapse_scale &&
(ans = CollapseComponentsScale(component_index1,
component_index2)) != -1)
return ans;
return -1;
}
// If the SumDescriptor has exactly one part that is either a
// SimpleForwardingDescriptor or an OffsetForwardingDescriptor containing a
// SimpleForwardingDescriptor, returns the node-index that the
// SimpleForwardingDescriptor contains. Otherwise returns -1.
//
// E.g. of the SumDescriptor represents something like "foo" it returns
// the index for "foo"; if it represents "Offset(foo, -2)" it returns
// the index for "foo"; if it represents something else like
// "Sum(foo, bar)" or "IfDefined(foo)", then it returns -1.
int32 SumDescriptorIsCollapsible(const SumDescriptor &sum_desc) {
// I don't much like having to use dynamic_cast here.
const SimpleSumDescriptor *ss = dynamic_cast<const SimpleSumDescriptor*>(
&sum_desc);
if (ss == NULL) return -1;
const ForwardingDescriptor *fd = &(ss->Src());
const OffsetForwardingDescriptor *od =
dynamic_cast<const OffsetForwardingDescriptor*>(fd);
if (od != NULL)
fd = &(od->Src());
const SimpleForwardingDescriptor *sd =
dynamic_cast<const SimpleForwardingDescriptor*>(fd);
if (sd == NULL) return -1;
else {
// the following is a rather roundabout way to get the node-index from a
// SimpleForwardingDescriptor, but it works (it avoids adding other stuff
// to the interface).
std::vector<int32> v;
sd->GetNodeDependencies(&v);
int32 node_index = v[0];
return node_index;
}
}
// If the Descriptor is a sum over different offsets of a particular node,
// e.g. something of the form "Sum(Offset(foo, -2), Offset(foo, 2))" or in the
// most degenerate case just "foo", then this function returns the index for
// foo; otherwise it returns -1.
int32 DescriptorIsCollapsible(const Descriptor &desc) {
int32 ans = SumDescriptorIsCollapsible(desc.Part(0));
for (int32 i = 1; i < desc.NumParts(); i++) {
if (ans != -1) {
int32 node_index = SumDescriptorIsCollapsible(desc.Part(i));
if (node_index != ans)
ans = -1;
}
}
// note: ans is only >= 0 if the answers from all parts of
// the SumDescriptors were >=0 and identical to each other.
// Otherwise it will be -1.
return ans;
}
// Replaces all the nodes with index 'node_to_replace' in 'src' with the
// descriptor 'expr', and returns the appropriately modified Descriptor. For
// example, if 'src' is 'Append(Offset(foo, -1), Offset(foo, 1))' and 'expr'
// is 'Offset(bar, -1)', this should give you: 'Append(Offset(bar, -2), bar)'.
Descriptor ReplaceNodeInDescriptor(const Descriptor &src,
int32 node_to_replace,
const Descriptor &expr) {
// The way we replace it is at the textual level: we create a "fake" vector
// of node-names where the printed form of 'expr' appears as the
// node name in node_names[node_to_replace]; we print the descriptor
// in 'src' using that faked node-names vector; and we parse it again
// using the real node-names vector.
std::vector<std::string> node_names = nnet_->GetNodeNames();
std::ostringstream expr_os;
expr.WriteConfig(expr_os, node_names);
node_names[node_to_replace] = expr_os.str();
std::ostringstream src_replaced_os;
src.WriteConfig(src_replaced_os, node_names);
std::vector<std::string> tokens;
// now, in the example, src_replaced_os.str() would equal
// Append(Offset(Offset(bar, -1), -1), Offset(Offset(bar, -1), 1)).
bool b = DescriptorTokenize(src_replaced_os.str(),
&tokens);
KALDI_ASSERT(b);
// 'tokens' might now contain something like [ "Append", "(", "Offset", ..., ")" ].
tokens.push_back("end of input");
const std::string *next_token = &(tokens[0]);
Descriptor ans;
// parse using the un-modified node names.
ans.Parse(nnet_->GetNodeNames(), &next_token);
KALDI_ASSERT(*next_token == "end of input");
// Note: normalization of expressions in Descriptors, such as conversion of
// Offset(Offset(bar, -1), -1) to Offset(bar, -2), takes place inside the
// Descriptor parsing code.
return ans;
}
/**
This function modifies the neural network in the case where 'node_index' is a
component-input node whose component (in the node at 'node_index + 1),
if a bunch of other conditions also apply.
First, he descriptor in the node at 'node_index' has to have
a certain limited structure, e.g.:
- the input-descriptor is a component-node name like 'foo' or:
- the input-descriptor is a combination of Append and/or and Offset
expressions, like:
'Append(Offset(foo, -3), foo, Offset(foo, 3))',
referring to only a single node 'foo'.
ALSO the components need to be collapsible by the function
CollapseComponents(), which will only be possible for certain pairs of
component types (like, say, a dropout node preceding an affine or
convolutional node); see that function for details.
This function will (if it does anything), modify the node to replace the
component at 'node_index + 1' with a newly created component that combines
the two components involved.
It will also modify the node at 'node_index' by
replacing its Descriptor with a modified input descriptor, so that if the
input-descriptor of node 'foo' was 'bar', the descriptor for our node would
now look like:
'Append(Offset(bar, -3), bar, Offset(bar, 3))'...
and note that 'bar' itself doesn't have to be just a node-name, it can
be a more general expression.
This function returns true if it changed something in the neural net, and false
otherwise.
*/
bool OptimizeNode(int32 node_index) {
NetworkNode &descriptor_node = nnet_->GetNode(node_index);
if (descriptor_node.node_type != kDescriptor ||
node_index + 1 >= nnet_->NumNodes())
return false;
NetworkNode &component_node = nnet_->GetNode(node_index + 1);
if (component_node.node_type != kComponent)
return false;
Descriptor &descriptor = descriptor_node.descriptor;
int32 component_index = component_node.u.component_index;
int32 input_node_index = DescriptorIsCollapsible(descriptor);
if (input_node_index == -1)
return false; // do nothing, the expression in the Descriptor is too
// general for this code to handle.
const NetworkNode &input_node = nnet_->GetNode(input_node_index);
if (input_node.node_type != kComponent)
return false;
int32 input_component_index = input_node.u.component_index;
int32 combined_component_index = CollapseComponents(input_component_index,
component_index);
if (combined_component_index == -1)
return false; // these components were not of types that can be
// collapsed.
component_node.u.component_index = combined_component_index;
// 'input_descriptor_node' is the input descriptor of the component
// that's the input to the node in "node_index". (e.g. the component for
// the node "foo" in our example above).
const NetworkNode &input_descriptor_node = nnet_->GetNode(input_node_index - 1);
const Descriptor &input_descriptor = input_descriptor_node.descriptor;
// The next statement replaces the descriptor in the network node with one
// in which the component 'input_component_index' has been replaced with its
// input, thus bypassing the component in 'input_component_index'.
// We'll later remove that component and its node from the network, if
// needed by RemoveOrphanNodes() and RemoveOrphanComponents().
descriptor = ReplaceNodeInDescriptor(descriptor,
input_node_index,
input_descriptor);
return true;
}
/**
Tries to produce a component that's equivalent to running the component
'component_index2' with input given by 'component_index1'. This handles
the case where 'component_index1' is of type DropoutComponent or
GeneralDropoutComponent, and where 'component_index2' is of type
AffineComponent, NaturalGradientAffineComponent, LinearComponent,
TdnnComponent or TimeHeightConvolutionComponent.
Returns -1 if this code can't produce a combined component (normally
because the components have the wrong types).
*/
int32 CollapseComponentsDropout(int32 component_index1,
int32 component_index2) {
const DropoutComponent *dropout_component =
dynamic_cast<const DropoutComponent*>(
nnet_->GetComponent(component_index1));
const GeneralDropoutComponent *general_dropout_component =
dynamic_cast<const GeneralDropoutComponent*>(
nnet_->GetComponent(component_index1));
if (dropout_component == NULL && general_dropout_component == NULL)
return -1;
BaseFloat scale; // the scale we have to apply to correct for removing
// this dropout comonent.
if (dropout_component != NULL) {
BaseFloat dropout_proportion = dropout_component->DropoutProportion();
scale = 1.0 / (1.0 - dropout_proportion);
} else {
// for GeneralDropoutComponent, it's done in such a way that the expectation
// is always 1. (When it's nonzero, we give it a value 1/(1-dropout_proportion).
// So no scaling is needed.
scale = 1.0;
}
// note: if the 2nd component is not of a type that we can scale, the
// following function call will return -1, which is OK.
return GetScaledComponentIndex(component_index2,
scale);
}
/**
Tries to produce a component that's equivalent to running the component
'component_index2' with input given by 'component_index1'. This handles
the case where 'component_index1' is of type BatchnormComponent, and where
'component_index2' is of type AffineComponent or
NaturalGradientAffineComponent.
Returns -1 if this code can't produce a combined component (normally
because the components have the wrong types).
*/
int32 CollapseComponentsBatchnorm(int32 component_index1,
int32 component_index2) {
const BatchNormComponent *batchnorm_component =
dynamic_cast<const BatchNormComponent*>(
nnet_->GetComponent(component_index1));
if (batchnorm_component == NULL)
return -1;
if (batchnorm_component->Offset().Dim() == 0) {
KALDI_ERR << "Expected batch-norm components to have test-mode set.";
}
std::string batchnorm_component_name = nnet_->GetComponentName(
component_index1);
return GetDiagonallyPreModifiedComponentIndex(batchnorm_component->Offset(),
batchnorm_component->Scale(),
batchnorm_component_name,
component_index2);
}
/**
Tries to produce a component that's equivalent to running the component
'component_index2' with input given by 'component_index1'. This handles
the case where 'component_index1' is of type FixedAffineComponent,
AffineComponent or NaturalGradientAffineComponent, and 'component_index2'
is of type AffineComponent or NaturalGradientAffineComponent.
Returns -1 if this code can't produce a combined component.
*/
int32 CollapseComponentsAffine(int32 component_index1,
int32 component_index2) {
const FixedAffineComponent *fixed_affine_component1 =
dynamic_cast<const FixedAffineComponent*>(
nnet_->GetComponent(component_index1));
const AffineComponent *affine_component1 =
dynamic_cast<const AffineComponent*>(
nnet_->GetComponent(component_index1)),
*affine_component2 =
dynamic_cast<const AffineComponent*>(
nnet_->GetComponent(component_index2));
if (affine_component2 == NULL ||
(fixed_affine_component1 == NULL && affine_component1 == NULL))
return -1;
std::ostringstream new_component_name_os;
new_component_name_os << nnet_->GetComponentName(component_index1)
<< "." << nnet_->GetComponentName(component_index2);
std::string new_component_name = new_component_name_os.str();
int32 new_component_index = nnet_->GetComponentIndex(new_component_name);
if (new_component_index >= 0)
return new_component_index; // we previously created this.
const CuMatrix<BaseFloat> *linear_params1;
const CuVector<BaseFloat> *bias_params1;
if (fixed_affine_component1 != NULL) {
if (fixed_affine_component1->InputDim() >
fixed_affine_component1->OutputDim()) {
// first affine component is dimension-reducing, so combining the two
// might be inefficient.
return -1;
}
linear_params1 = &(fixed_affine_component1->LinearParams());
bias_params1 = &(fixed_affine_component1->BiasParams());
} else {
if (affine_component1->InputDim() >
affine_component1->OutputDim()) {
// first affine component is dimension-reducing, so combining the two
// might be inefficient.
return -1;
}
linear_params1 = &(affine_component1->LinearParams());
bias_params1 = &(affine_component1->BiasParams());
}
int32 input_dim1 = linear_params1->NumCols(),
output_dim1 = linear_params1->NumRows(),
input_dim2 = affine_component2->InputDim(),
output_dim2 = affine_component2->OutputDim();
KALDI_ASSERT(input_dim2 % output_dim1 == 0);
// with typical configurations for TDNNs, like Append(-3, 0, 3) [in xconfigs], a.k.a.
// Append(Offset(foo, -3), foo, Offset(foo, 3)), the first component's output may
// be smaller than the second component's input. We construct a single
// transform with a block-diagonal structure in this case.
int32 multiple = input_dim2 / output_dim1;
CuVector<BaseFloat> bias_params1_full(input_dim2);
CuMatrix<BaseFloat> linear_params1_full(input_dim2,
multiple * input_dim1);
for (int32 i = 0; i < multiple; i++) {
bias_params1_full.Range(i * output_dim1,
output_dim1).CopyFromVec(*bias_params1);
linear_params1_full.Range(i * output_dim1, output_dim1,
i * input_dim1, input_dim1).CopyFromMat(
*linear_params1);
}
const CuVector<BaseFloat> &bias_params2 = affine_component2->BiasParams();
const CuMatrix<BaseFloat> &linear_params2 = affine_component2->LinearParams();
int32 new_input_dim = multiple * input_dim1,
new_output_dim = output_dim2;
CuMatrix<BaseFloat> new_linear_params(new_output_dim,
new_input_dim);
CuVector<BaseFloat> new_bias_params(bias_params2);
new_bias_params.AddMatVec(1.0, linear_params2, kNoTrans,
bias_params1_full, 1.0);
new_linear_params.AddMatMat(1.0, linear_params2, kNoTrans,
linear_params1_full, kNoTrans, 0.0);
AffineComponent *new_component = new AffineComponent();
new_component->Init(new_input_dim, new_output_dim, 0.0, 0.0);
new_component->SetParams(new_bias_params, new_linear_params);
return nnet_->AddComponent(new_component_name, new_component);
}
/**
Tries to produce a component that's equivalent to running the component
'component_index2' with input given by 'component_index1'. This handles
the case where 'component_index1' is of type AffineComponent or
NaturalGradientAffineComponent, and 'component_index2' is of type
FixedScaleComponent, and the output dim of the first is the same as the
input dim of the second. This situation is common in output layers. Later
if it's needed, we could easily enable the code to support
PerElementScaleComponent.
Returns -1 if this code can't produce a combined component.
*/
int32 CollapseComponentsScale(int32 component_index1,
int32 component_index2) {
const AffineComponent *affine_component1 =
dynamic_cast<const AffineComponent*>(
nnet_->GetComponent(component_index1));
const FixedScaleComponent *fixed_scale_component2 =
dynamic_cast<const FixedScaleComponent*>(
nnet_->GetComponent(component_index2));
if (affine_component1 == NULL ||
fixed_scale_component2 == NULL ||
affine_component1->OutputDim() !=
fixed_scale_component2->InputDim())
return -1;
std::ostringstream new_component_name_os;
new_component_name_os << nnet_->GetComponentName(component_index1)
<< "." << nnet_->GetComponentName(component_index2);
std::string new_component_name = new_component_name_os.str();
int32 new_component_index = nnet_->GetComponentIndex(new_component_name);
if (new_component_index >= 0)
return new_component_index; // we previously created this.
CuMatrix<BaseFloat> linear_params(affine_component1->LinearParams());
CuVector<BaseFloat> bias_params(affine_component1->BiasParams());
const CuVector<BaseFloat> &scales = fixed_scale_component2->Scales();
bias_params.MulElements(scales);
linear_params.MulRowsVec(scales);
AffineComponent *new_affine_component =
dynamic_cast<AffineComponent*>(affine_component1->Copy());
new_affine_component->SetParams(bias_params, linear_params);
return nnet_->AddComponent(new_component_name,
new_affine_component);
}
/**
This function finds, or creates, a component which is like
'component_index' but is combined with a diagonal offset-and-scale
transform *before* the component. (We may later create a function called
GetDiagonallyPostModifiedComponentIndex if we need to apply the
transform *after* the component.
This function doesn't work for convolutional components, because
due to zero-padding, it's not possible to represent an offset/scale
on the input filters via changes in the convolutional parameters.
[the scale, yes; but we don't bother doing that.]
This may require modifying its linear and
bias parameters.
@param [in] offset The offset term 'b' in the diagnonal transform
y = a x + b.
@param [in] scale The scale term 'a' in the diagnonal transform
y = a x + b. Must have the same dimension as
'offset'.
@param [in] src_identifier A string that uniquely identifies 'offset'
and 'scale'. In practice it will be the component-index
from where 'offset' and 'scale' were taken.
@param [in] component_index The component to be modified (not in-place,
but as a copy). The component described in 'component_index'
must be AffineComponent, NaturalGradientAffineComponent,
LinearComponent or TdnnComponent, and the dimension of
'offset'/'scale' should divide the component input dimension,
otherwise it's an error.
@return Returns the component-index of a suitably modified component.
If one like this already exists, the existing one will be returned.
If the component in 'component_index' was not of a type that can
be modified in this way, returns -1.
*/
int32 GetDiagonallyPreModifiedComponentIndex(
const CuVectorBase<BaseFloat> &offset,
const CuVectorBase<BaseFloat> &scale,
const std::string &src_identifier,
int32 component_index) {
KALDI_ASSERT(offset.Dim() > 0 && offset.Dim() == scale.Dim());
if (offset.Max() == 0.0 && offset.Min() == 0.0 &&
scale.Max() == 1.0 && scale.Min() == 1.0)
return component_index; // identity transform.
std::ostringstream new_component_name_os;
new_component_name_os << src_identifier
<< "."
<< nnet_->GetComponentName(component_index);
std::string new_component_name = new_component_name_os.str();
int32 new_component_index = nnet_->GetComponentIndex(new_component_name);
if (new_component_index >= 0)
return new_component_index; // we previously created this.
const Component *component = nnet_->GetComponent(component_index);
const AffineComponent *affine_component =
dynamic_cast<const AffineComponent*>(component);
const LinearComponent *linear_component =
dynamic_cast<const LinearComponent*>(component);
const TdnnComponent *tdnn_component =
dynamic_cast<const TdnnComponent*>(component);
Component *new_component = NULL;
if (affine_component != NULL) {
new_component = component->Copy();
AffineComponent *new_affine_component =
dynamic_cast<AffineComponent*>(new_component);
PreMultiplyAffineParameters(offset, scale,
&(new_affine_component->BiasParams()),
&(new_affine_component->LinearParams()));
} else if (linear_component != NULL) {
CuVector<BaseFloat> bias_params(linear_component->OutputDim());
AffineComponent *new_affine_component =
new AffineComponent(linear_component->Params(),
bias_params,
linear_component->LearningRate());
PreMultiplyAffineParameters(offset, scale,
&(new_affine_component->BiasParams()),
&(new_affine_component->LinearParams()));
new_component = new_affine_component;
} else if (tdnn_component != NULL) {
new_component = tdnn_component->Copy();
TdnnComponent *new_tdnn_component =
dynamic_cast<TdnnComponent*>(new_component);
if (new_tdnn_component->BiasParams().Dim() == 0) {
// make sure it has a bias even if it had none before.
new_tdnn_component->BiasParams().Resize(
new_tdnn_component->OutputDim());
}
PreMultiplyAffineParameters(offset, scale,
&(new_tdnn_component->BiasParams()),
&(new_tdnn_component->LinearParams()));
} else {
return -1; // we can't do this: this component isn't of the right type.
}
return nnet_->AddComponent(new_component_name, new_component);
}
/**
This helper function, used GetDiagonallyPreModifiedComponentIndex,
modifies the linear and bias parameters of an affine transform to
capture the effect of preceding that affine transform by a
diagonal affine transform with parameters 'offset' and 'scale'.
The dimension of 'offset' and 'scale' must be the same and must
divide the input dim of the affine transform, i.e. must divide
linear_params->NumCols().
*/
static void PreMultiplyAffineParameters(
const CuVectorBase<BaseFloat> &offset,
const CuVectorBase<BaseFloat> &scale,
CuVectorBase<BaseFloat> *bias_params,
CuMatrixBase<BaseFloat> *linear_params) {
int32 input_dim = linear_params->NumCols(),
transform_dim = offset.Dim();
KALDI_ASSERT(bias_params->Dim() == linear_params->NumRows() &&
offset.Dim() == scale.Dim() &&
input_dim % transform_dim == 0);
// we may have to repeat 'offset' and scale' several times.
// 'full_offset' and 'full_scale' may be repeated versions of
// 'offset' and 'scale' in case input_dim > transform_dim.
CuVector<BaseFloat> full_offset(input_dim),
full_scale(input_dim);
for (int32 d = 0; d < input_dim; d += transform_dim) {
full_offset.Range(d, transform_dim).CopyFromVec(offset);
full_scale.Range(d, transform_dim).CopyFromVec(scale);
}
// Image the affine component does y = a x + b, and by applying
// the pre-transform we are replacing x with s x + o
// s for scale and o for offset), so we have:
// y = a s x + (b + a o).
// do: b += a o.
bias_params->AddMatVec(1.0, *linear_params, kNoTrans, full_offset, 1.0);
// do: a = a * s.
linear_params->MulColsVec(full_scale);
}
/**
Given a component 'component_index', returns a component which
will give the same output as the current component gives when its input
is scaled by 'scale'. This will generally mean applying
the scale to the linear parameters in the component, if it is
an affine, linear or convolutional component.
If the component referred to in 'component_index' is not an
affine or convolutional component, and therefore cannot
be scaled (by this code), then this function returns -1.
*/
int32 GetScaledComponentIndex(int32 component_index,
BaseFloat scale) {
if (scale == 1.0)
return component_index;
std::ostringstream os;
os << nnet_->GetComponentName(component_index)
<< ".scale" << std::setprecision(3) << scale;
std::string new_component_name = os.str(); // e.g. foo.s2.0
int32 ans = nnet_->GetComponentIndex(new_component_name);
if (ans >= 0)
return ans; // one already exists, no need to create it.
const Component *current_component = nnet_->GetComponent(component_index);
const AffineComponent *affine_component =
dynamic_cast<const AffineComponent*>(current_component);
const TimeHeightConvolutionComponent *conv_component =
dynamic_cast<const TimeHeightConvolutionComponent*>(current_component);
const LinearComponent *linear_component =
dynamic_cast<const LinearComponent*>(current_component);
const TdnnComponent *tdnn_component =
dynamic_cast<const TdnnComponent*>(current_component);
if (affine_component == NULL && conv_component == NULL &&
linear_component == NULL && tdnn_component == NULL) {
// We can't scale this component (at least, not using this code).
return -1;
}
Component *new_component = current_component->Copy();
if (affine_component != NULL) {
// AffineComponent or NaturalGradientAffineComponent.
dynamic_cast<AffineComponent*>(new_component)->
LinearParams().Scale(scale);
} else if (conv_component != NULL) {
dynamic_cast<TimeHeightConvolutionComponent*>(new_component)->
ScaleLinearParams(scale);
} else if (linear_component != NULL) {
dynamic_cast<LinearComponent*>(new_component)->Params().Scale(scale);
} else {
KALDI_ASSERT(tdnn_component != NULL);
dynamic_cast<TdnnComponent*>(new_component)->LinearParams().Scale(scale);
}
return nnet_->AddComponent(new_component_name, new_component);
}
const CollapseModelConfig &config_;
Nnet *nnet_;
};
void CollapseModel(const CollapseModelConfig &config,
Nnet *nnet) {
ModelCollapser c(config, nnet);
c.Collapse();
}
bool UpdateNnetWithMaxChange(const Nnet &delta_nnet,
BaseFloat max_param_change,
BaseFloat max_change_scale,
BaseFloat scale, Nnet *nnet,
std::vector<int32> *
num_max_change_per_component_applied,
int32 *num_max_change_global_applied) {
KALDI_ASSERT(nnet != NULL);
// computes scaling factors for per-component max-change
const int32 num_updatable = NumUpdatableComponents(delta_nnet);
Vector<BaseFloat> scale_factors = Vector<BaseFloat>(num_updatable);
BaseFloat param_delta_squared = 0.0;
int32 num_max_change_per_component_applied_per_minibatch = 0;
BaseFloat min_scale = 1.0;
std::string component_name_with_min_scale;
BaseFloat max_change_with_min_scale;
int32 i = 0;
for (int32 c = 0; c < delta_nnet.NumComponents(); c++) {
const Component *comp = delta_nnet.GetComponent(c);
if (comp->Properties() & kUpdatableComponent) {
const UpdatableComponent *uc =
dynamic_cast<const UpdatableComponent*>(comp);
if (uc == NULL)
KALDI_ERR << "Updatable component does not inherit from class "
<< "UpdatableComponent; change this code.";
BaseFloat max_param_change_per_comp = uc->MaxChange();
KALDI_ASSERT(max_param_change_per_comp >= 0.0);
BaseFloat dot_prod = uc->DotProduct(*uc);
if (max_param_change_per_comp != 0.0 &&
std::sqrt(dot_prod) * std::abs(scale) >
max_param_change_per_comp * max_change_scale) {
scale_factors(i) = max_param_change_per_comp * max_change_scale /
(std::sqrt(dot_prod) * std::abs(scale));
(*num_max_change_per_component_applied)[i]++;
num_max_change_per_component_applied_per_minibatch++;
KALDI_VLOG(2) << "Parameters in " << delta_nnet.GetComponentName(c)
<< " change too big: " << std::sqrt(dot_prod) << " * "
<< scale << " > " << "max-change * max-change-scale="
<< max_param_change_per_comp << " * " << max_change_scale
<< ", scaling by " << scale_factors(i);
} else {
scale_factors(i) = 1.0;
}
if (i == 0 || scale_factors(i) < min_scale) {
min_scale = scale_factors(i);
component_name_with_min_scale = delta_nnet.GetComponentName(c);
max_change_with_min_scale = max_param_change_per_comp;
}
param_delta_squared += std::pow(scale_factors(i),
static_cast<BaseFloat>(2.0)) * dot_prod;
i++;
}
}
KALDI_ASSERT(i == scale_factors.Dim());
BaseFloat param_delta = std::sqrt(param_delta_squared);
// computes the scale for global max-change
param_delta *= std::abs(scale);
if (max_param_change != 0.0) {
if (param_delta > max_param_change * max_change_scale) {
if (param_delta - param_delta != 0.0) {
KALDI_WARN << "Infinite parameter change, will not apply.";
return false;
} else {
scale *= max_param_change * max_change_scale / param_delta;
(*num_max_change_global_applied)++;
}
}
}
if ((max_param_change != 0.0 &&
param_delta > max_param_change * max_change_scale &&
param_delta - param_delta == 0.0) || min_scale < 1.0) {
std::ostringstream ostr;
if (min_scale < 1.0)
ostr << "Per-component max-change active on "
<< num_max_change_per_component_applied_per_minibatch
<< " / " << num_updatable << " Updatable Components."
<< " (Smallest factor=" << min_scale << " on "
<< component_name_with_min_scale
<< " with max-change=" << max_change_with_min_scale <<"). ";
if (param_delta > max_param_change * max_change_scale)
ostr << "Global max-change factor was "
<< max_param_change * max_change_scale / param_delta
<< " with max-change=" << max_param_change << ".";
KALDI_LOG << ostr.str();
}
// applies both of the max-change scalings all at once, component by component
// and updates parameters
scale_factors.Scale(scale);
AddNnetComponents(delta_nnet, scale_factors, scale, nnet);
return true;
}
int32 GetNumNvalues(const std::vector<NnetIo> &io_vec,
bool exhaustive) {
int32 num_n_values = -1;
for (size_t i = 0; i < io_vec.size(); i++) {
const NnetIo &io = io_vec[i];
int32 this_num_n_values;
const std::vector<Index> &index_vec = io.indexes;
KALDI_ASSERT(!index_vec.empty() &&
"Empty input or output in ComputationRequest?");
if (exhaustive) {
int32 lowest_n_value = std::numeric_limits<int32>::max(),
highest_n_value = std::numeric_limits<int32>::min();
std::vector<Index>::const_iterator
iter = index_vec.begin(), end = index_vec.end();
for (; iter != end; ++iter) {
int32 n = iter->n;
if (n < lowest_n_value) { lowest_n_value = n; }
if (n > highest_n_value) { highest_n_value = n; }
}
this_num_n_values = highest_n_value + 1 - lowest_n_value;
} else {
// we assume that the 'n' values range from zero to N-1,
// where N is the number of distinct 'n' values.
this_num_n_values = index_vec.back().n + 1;
}
if (num_n_values == -1) {
num_n_values = this_num_n_values;
} else {
if (num_n_values != this_num_n_values) {
KALDI_ERR << "Different inputs/outputs of ComputationRequest have "
"different numbers of n values: " << num_n_values
<< " vs. " << this_num_n_values;
}
}
}
if (!exhaustive && RandInt(0, 100) == 0) {
int32 num_n_values_check = GetNumNvalues(io_vec, true);
if (num_n_values != num_n_values_check) {
KALDI_ERR << "Exhaustive and quick checks returned different "
"answers: " << num_n_values << " vs. "
<< num_n_values_check;
}
}
return num_n_values;
}
void ApplyL2Regularization(const Nnet &nnet,
BaseFloat l2_regularize_scale,
Nnet *delta_nnet) {
if (l2_regularize_scale == 0.0)
return;
for (int32 c = 0; c < nnet.NumComponents(); c++) {
const Component *src_component_in = nnet.GetComponent(c);
if (src_component_in->Properties() & kUpdatableComponent) {
const UpdatableComponent *src_component =
dynamic_cast<const UpdatableComponent*>(src_component_in);
UpdatableComponent *dest_component =
dynamic_cast<UpdatableComponent*>(delta_nnet->GetComponent(c));
// The following code will segfault if they aren't both updatable, which
// would be a bug in the calling code.
BaseFloat lrate = dest_component->LearningRate(),
l2_regularize = dest_component->L2Regularization();
KALDI_ASSERT(lrate >= 0 && l2_regularize >= 0);
BaseFloat scale = -2.0 * l2_regularize_scale * lrate * l2_regularize;
if (scale != 0.0)
dest_component->Add(scale, *src_component);
}
}
}
bool UpdateNnetWithMaxChange(const Nnet &delta_nnet,
BaseFloat max_param_change,
BaseFloat max_change_scale,
BaseFloat scale, Nnet *nnet,
MaxChangeStats *stats) {
bool ans = UpdateNnetWithMaxChange(
delta_nnet, max_param_change, max_change_scale,
scale, nnet,
&(stats->num_max_change_per_component_applied),
&(stats->num_max_change_global_applied));
stats->num_minibatches_processed++;
return ans;
}
void MaxChangeStats::Print(const Nnet &nnet) const {
int32 i = 0;
for (int32 c = 0; c < nnet.NumComponents(); c++) {
const Component *comp = nnet.GetComponent(c);
if (comp->Properties() & kUpdatableComponent) {
const UpdatableComponent *uc = dynamic_cast<const UpdatableComponent*>(
comp);
if (uc == NULL)
KALDI_ERR << "Updatable component does not inherit from class "
<< "UpdatableComponent; change this code.";
if (num_max_change_per_component_applied[i] > 0)
KALDI_LOG << "For " << nnet.GetComponentName(c)
<< ", per-component max-change was enforced "
<< ((100.0 * num_max_change_per_component_applied[i]) /
num_minibatches_processed)
<< " \% of the time.";
i++;
}
}
if (num_max_change_global_applied > 0)
KALDI_LOG << "The global max-change was enforced "
<< ((100.0 * num_max_change_global_applied) /
num_minibatches_processed)
<< " \% of the time.";
}
} // namespace nnet3
} // namespace kaldi