Blame view
src/nnet3bin/nnet3-align-compiled.cc
8.24 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
// nnet2bin/nnet-align-compiled.cc // Copyright 2009-2012 Microsoft Corporation // Johns Hopkins University (author: Daniel Povey) // 2015 Vijayaditya Peddinti // 2015-16 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "util/common-utils.h" #include "gmm/am-diag-gmm.h" #include "hmm/transition-model.h" #include "hmm/hmm-utils.h" #include "fstext/fstext-lib.h" #include "decoder/decoder-wrappers.h" #include "decoder/training-graph-compiler.h" #include "nnet3/nnet-am-decodable-simple.h" #include "nnet3/nnet-utils.h" #include "lat/kaldi-lattice.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; const char *usage = "Align features given nnet3 neural net model " "Usage: nnet3-align-compiled [options] <nnet-in> <graphs-rspecifier> " "<features-rspecifier> <alignments-wspecifier> " "e.g.: " " nnet3-align-compiled 1.mdl ark:graphs.fsts scp:train.scp ark:1.ali " "or: " " compile-train-graphs tree 1.mdl lex.fst 'ark:sym2int.pl -f 2- words.txt text|' \\ " " ark:- | nnet3-align-compiled 1.mdl ark:- scp:train.scp t, ark:1.ali "; ParseOptions po(usage); AlignConfig align_config; NnetSimpleComputationOptions decodable_opts; std::string use_gpu = "yes"; BaseFloat transition_scale = 1.0; BaseFloat self_loop_scale = 1.0; std::string per_frame_acwt_wspecifier; std::string ivector_rspecifier, online_ivector_rspecifier, utt2spk_rspecifier; int32 online_ivector_period = 0; align_config.Register(&po); decodable_opts.Register(&po); po.Register("use-gpu", &use_gpu, "yes|no|optional|wait, only has effect if compiled with CUDA"); po.Register("transition-scale", &transition_scale, "Transition-probability scale [relative to acoustics]"); po.Register("self-loop-scale", &self_loop_scale, "Scale of self-loop versus non-self-loop " "log probs [relative to acoustics]"); po.Register("write-per-frame-acoustic-loglikes", &per_frame_acwt_wspecifier, "Wspecifier for table of vectors containing the acoustic log-likelihoods " "per frame for each utterance. E.g. ark:foo/per_frame_logprobs.1.ark"); po.Register("ivectors", &ivector_rspecifier, "Rspecifier for " "iVectors as vectors (i.e. not estimated online); per utterance " "by default, or per speaker if you provide the --utt2spk option."); po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier for " "iVectors estimated online, as matrices. If you supply this," " you must set the --online-ivector-period option."); po.Register("online-ivector-period", &online_ivector_period, "Number of frames " "between iVectors in matrices supplied to the --online-ivectors " "option"); po.Read(argc, argv); if (po.NumArgs() < 4 || po.NumArgs() > 5) { po.PrintUsage(); exit(1); } #if HAVE_CUDA==1 CuDevice::Instantiate().SelectGpuId(use_gpu); #endif std::string model_in_filename = po.GetArg(1), fst_rspecifier = po.GetArg(2), feature_rspecifier = po.GetArg(3), alignment_wspecifier = po.GetArg(4), scores_wspecifier = po.GetOptArg(5); int num_done = 0, num_err = 0, num_retry = 0; double tot_like = 0.0; kaldi::int64 frame_count = 0; { TransitionModel trans_model; AmNnetSimple am_nnet; { bool binary; Input ki(model_in_filename, &binary); trans_model.Read(ki.Stream(), binary); am_nnet.Read(ki.Stream(), binary); } SetBatchnormTestMode(true, &(am_nnet.GetNnet())); SetDropoutTestMode(true, &(am_nnet.GetNnet())); CollapseModel(CollapseModelConfig(), &(am_nnet.GetNnet())); // this compiler object allows caching of computations across // different utterances. CachingOptimizingCompiler compiler(am_nnet.GetNnet(), decodable_opts.optimize_config); RandomAccessBaseFloatMatrixReader online_ivector_reader( online_ivector_rspecifier); RandomAccessBaseFloatVectorReaderMapped ivector_reader( ivector_rspecifier, utt2spk_rspecifier); SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_rspecifier); RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier); Int32VectorWriter alignment_writer(alignment_wspecifier); BaseFloatWriter scores_writer(scores_wspecifier); BaseFloatVectorWriter per_frame_acwt_writer(per_frame_acwt_wspecifier); for (; !fst_reader.Done(); fst_reader.Next()) { std::string utt = fst_reader.Key(); if (!feature_reader.HasKey(utt)) { KALDI_WARN << "No features for utterance " << utt; num_err++; continue; } const Matrix<BaseFloat> &features = feature_reader.Value(utt); VectorFst<StdArc> decode_fst(fst_reader.Value()); fst_reader.FreeCurrent(); // this stops copy-on-write of the fst // by deleting the fst inside the reader, since we're about to mutate // the fst by adding transition probs. if (features.NumRows() == 0) { KALDI_WARN << "Zero-length utterance: " << utt; num_err++; continue; } const Matrix<BaseFloat> *online_ivectors = NULL; const Vector<BaseFloat> *ivector = NULL; if (!ivector_rspecifier.empty()) { if (!ivector_reader.HasKey(utt)) { KALDI_WARN << "No iVector available for utterance " << utt; num_err++; continue; } else { ivector = &ivector_reader.Value(utt); } } if (!online_ivector_rspecifier.empty()) { if (!online_ivector_reader.HasKey(utt)) { KALDI_WARN << "No online iVector available for utterance " << utt; num_err++; continue; } else { online_ivectors = &online_ivector_reader.Value(utt); } } { // Add transition-probs to the FST. std::vector<int32> disambig_syms; // empty. AddTransitionProbs(trans_model, disambig_syms, transition_scale, self_loop_scale, &decode_fst); } DecodableAmNnetSimple nnet_decodable( decodable_opts, trans_model, am_nnet, features, ivector, online_ivectors, online_ivector_period, &compiler); AlignUtteranceWrapper(align_config, utt, decodable_opts.acoustic_scale, &decode_fst, &nnet_decodable, &alignment_writer, &scores_writer, &num_done, &num_err, &num_retry, &tot_like, &frame_count, &per_frame_acwt_writer); } KALDI_LOG << "Overall log-likelihood per frame is " << (tot_like/frame_count) << " over " << frame_count<< " frames."; KALDI_LOG << "Retried " << num_retry << " out of " << (num_done + num_err) << " utterances."; KALDI_LOG << "Done " << num_done << ", errors on " << num_err; } #if HAVE_CUDA==1 CuDevice::Instantiate().PrintProfile(); #endif return (num_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |