nnet3-align-compiled.cc
8.24 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// nnet2bin/nnet-align-compiled.cc
// Copyright 2009-2012 Microsoft Corporation
// Johns Hopkins University (author: Daniel Povey)
// 2015 Vijayaditya Peddinti
// 2015-16 Vimal Manohar
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "gmm/am-diag-gmm.h"
#include "hmm/transition-model.h"
#include "hmm/hmm-utils.h"
#include "fstext/fstext-lib.h"
#include "decoder/decoder-wrappers.h"
#include "decoder/training-graph-compiler.h"
#include "nnet3/nnet-am-decodable-simple.h"
#include "nnet3/nnet-utils.h"
#include "lat/kaldi-lattice.h"
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::nnet3;
typedef kaldi::int32 int32;
using fst::SymbolTable;
using fst::VectorFst;
using fst::StdArc;
const char *usage =
"Align features given nnet3 neural net model\n"
"Usage: nnet3-align-compiled [options] <nnet-in> <graphs-rspecifier> "
"<features-rspecifier> <alignments-wspecifier>\n"
"e.g.: \n"
" nnet3-align-compiled 1.mdl ark:graphs.fsts scp:train.scp ark:1.ali\n"
"or:\n"
" compile-train-graphs tree 1.mdl lex.fst 'ark:sym2int.pl -f 2- words.txt text|' \\\n"
" ark:- | nnet3-align-compiled 1.mdl ark:- scp:train.scp t, ark:1.ali\n";
ParseOptions po(usage);
AlignConfig align_config;
NnetSimpleComputationOptions decodable_opts;
std::string use_gpu = "yes";
BaseFloat transition_scale = 1.0;
BaseFloat self_loop_scale = 1.0;
std::string per_frame_acwt_wspecifier;
std::string ivector_rspecifier,
online_ivector_rspecifier,
utt2spk_rspecifier;
int32 online_ivector_period = 0;
align_config.Register(&po);
decodable_opts.Register(&po);
po.Register("use-gpu", &use_gpu,
"yes|no|optional|wait, only has effect if compiled with CUDA");
po.Register("transition-scale", &transition_scale,
"Transition-probability scale [relative to acoustics]");
po.Register("self-loop-scale", &self_loop_scale,
"Scale of self-loop versus non-self-loop "
"log probs [relative to acoustics]");
po.Register("write-per-frame-acoustic-loglikes", &per_frame_acwt_wspecifier,
"Wspecifier for table of vectors containing the acoustic log-likelihoods "
"per frame for each utterance. E.g. ark:foo/per_frame_logprobs.1.ark");
po.Register("ivectors", &ivector_rspecifier, "Rspecifier for "
"iVectors as vectors (i.e. not estimated online); per utterance "
"by default, or per speaker if you provide the --utt2spk option.");
po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier for "
"iVectors estimated online, as matrices. If you supply this,"
" you must set the --online-ivector-period option.");
po.Register("online-ivector-period", &online_ivector_period, "Number of frames "
"between iVectors in matrices supplied to the --online-ivectors "
"option");
po.Read(argc, argv);
if (po.NumArgs() < 4 || po.NumArgs() > 5) {
po.PrintUsage();
exit(1);
}
#if HAVE_CUDA==1
CuDevice::Instantiate().SelectGpuId(use_gpu);
#endif
std::string model_in_filename = po.GetArg(1),
fst_rspecifier = po.GetArg(2),
feature_rspecifier = po.GetArg(3),
alignment_wspecifier = po.GetArg(4),
scores_wspecifier = po.GetOptArg(5);
int num_done = 0, num_err = 0, num_retry = 0;
double tot_like = 0.0;
kaldi::int64 frame_count = 0;
{
TransitionModel trans_model;
AmNnetSimple am_nnet;
{
bool binary;
Input ki(model_in_filename, &binary);
trans_model.Read(ki.Stream(), binary);
am_nnet.Read(ki.Stream(), binary);
}
SetBatchnormTestMode(true, &(am_nnet.GetNnet()));
SetDropoutTestMode(true, &(am_nnet.GetNnet()));
CollapseModel(CollapseModelConfig(), &(am_nnet.GetNnet()));
// this compiler object allows caching of computations across
// different utterances.
CachingOptimizingCompiler compiler(am_nnet.GetNnet(),
decodable_opts.optimize_config);
RandomAccessBaseFloatMatrixReader online_ivector_reader(
online_ivector_rspecifier);
RandomAccessBaseFloatVectorReaderMapped ivector_reader(
ivector_rspecifier, utt2spk_rspecifier);
SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_rspecifier);
RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
Int32VectorWriter alignment_writer(alignment_wspecifier);
BaseFloatWriter scores_writer(scores_wspecifier);
BaseFloatVectorWriter per_frame_acwt_writer(per_frame_acwt_wspecifier);
for (; !fst_reader.Done(); fst_reader.Next()) {
std::string utt = fst_reader.Key();
if (!feature_reader.HasKey(utt)) {
KALDI_WARN << "No features for utterance " << utt;
num_err++;
continue;
}
const Matrix<BaseFloat> &features = feature_reader.Value(utt);
VectorFst<StdArc> decode_fst(fst_reader.Value());
fst_reader.FreeCurrent(); // this stops copy-on-write of the fst
// by deleting the fst inside the reader, since we're about to mutate
// the fst by adding transition probs.
if (features.NumRows() == 0) {
KALDI_WARN << "Zero-length utterance: " << utt;
num_err++;
continue;
}
const Matrix<BaseFloat> *online_ivectors = NULL;
const Vector<BaseFloat> *ivector = NULL;
if (!ivector_rspecifier.empty()) {
if (!ivector_reader.HasKey(utt)) {
KALDI_WARN << "No iVector available for utterance " << utt;
num_err++;
continue;
} else {
ivector = &ivector_reader.Value(utt);
}
}
if (!online_ivector_rspecifier.empty()) {
if (!online_ivector_reader.HasKey(utt)) {
KALDI_WARN << "No online iVector available for utterance " << utt;
num_err++;
continue;
} else {
online_ivectors = &online_ivector_reader.Value(utt);
}
}
{ // Add transition-probs to the FST.
std::vector<int32> disambig_syms; // empty.
AddTransitionProbs(trans_model, disambig_syms,
transition_scale, self_loop_scale,
&decode_fst);
}
DecodableAmNnetSimple nnet_decodable(
decodable_opts, trans_model, am_nnet,
features, ivector, online_ivectors,
online_ivector_period, &compiler);
AlignUtteranceWrapper(align_config, utt,
decodable_opts.acoustic_scale,
&decode_fst, &nnet_decodable,
&alignment_writer, &scores_writer,
&num_done, &num_err, &num_retry,
&tot_like, &frame_count, &per_frame_acwt_writer);
}
KALDI_LOG << "Overall log-likelihood per frame is "
<< (tot_like/frame_count)
<< " over " << frame_count<< " frames.";
KALDI_LOG << "Retried " << num_retry << " out of "
<< (num_done + num_err) << " utterances.";
KALDI_LOG << "Done " << num_done << ", errors on " << num_err;
}
#if HAVE_CUDA==1
CuDevice::Instantiate().PrintProfile();
#endif
return (num_done != 0 ? 0 : 1);
} catch(const std::exception &e) {
std::cerr << e.what();
return -1;
}
}