Blame view

src/nnet3bin/nnet3-am-info.cc 2.62 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
  // nnet3bin/nnet3-am-info.cc
  
  // Copyright 2012-2015  Johns Hopkins University (author:  Daniel Povey)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "base/kaldi-common.h"
  #include "util/common-utils.h"
  #include "nnet3/am-nnet-simple.h"
  #include "hmm/transition-model.h"
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using namespace kaldi::nnet3;
      typedef kaldi::int32 int32;
  
      const char *usage =
          "Print some text information about an nnet3 neural network, to
  "
          "standard output
  "
          "
  "
          "Usage:  nnet3-am-info [options] <nnet>
  "
          "e.g.:
  "
          " nnet3-am-info 0.mdl
  "
          "See also: nnet3-am-info
  ";
      
      ParseOptions po(usage);
      
      po.Read(argc, argv);
      
      if (po.NumArgs() != 1) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string  nnet_rxfilename = po.GetArg(1);
  
      TransitionModel trans_model;
      AmNnetSimple am_nnet;
      {
        bool binary;
        Input ki(nnet_rxfilename, &binary);
        trans_model.Read(ki.Stream(), binary);
        am_nnet.Read(ki.Stream(), binary);
      }
      std::cout << am_nnet.Info();
  
      return 0;
    } catch(const std::exception &e) {
      std::cerr << e.what() << '
  ';
      return -1;
    }
  }
  
  /*
  Test script:
  
  cat <<EOF | nnet3-init --binary=false - - | nnet3-info -
  component name=affine1 type=NaturalGradientAffineComponent input-dim=72 output-dim=59
  component name=relu1 type=RectifiedLinearComponent dim=59
  component name=final_affine type=NaturalGradientAffineComponent input-dim=59 output-dim=298
  component name=logsoftmax type=SoftmaxComponent dim=298
  input-node name=input dim=18
  component-node name=affine1_node component=affine1 input=Append(Offset(input, -4), Offset(input, -3), Offset(input, -2), Offset(input, 0))
  component-node name=nonlin1 component=relu1 input=affine1_node
  component-node name=final_affine component=final_affine input=nonlin1
  component-node name=output_nonlin component=logsoftmax input=final_affine
  output-node name=output input=output_nonlin  
  EOF
  */