Blame view
src/nnet3bin/nnet3-get-egs.cc
11 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
// nnet3bin/nnet3-get-egs.cc // Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey) // 2014 Vimal Manohar // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include <sstream> #include "base/kaldi-common.h" #include "util/common-utils.h" #include "hmm/transition-model.h" #include "hmm/posterior.h" #include "nnet3/nnet-example.h" #include "nnet3/nnet-example-utils.h" namespace kaldi { namespace nnet3 { static bool ProcessFile(const GeneralMatrix &feats, const MatrixBase<BaseFloat> *ivector_feats, int32 ivector_period, const Posterior &pdf_post, const std::string &utt_id, bool compress, int32 num_pdfs, int32 length_tolerance, UtteranceSplitter *utt_splitter, NnetExampleWriter *example_writer) { int32 num_input_frames = feats.NumRows(); if (!utt_splitter->LengthsMatch(utt_id, num_input_frames, static_cast<int32>(pdf_post.size()), length_tolerance)) return false; // LengthsMatch() will have printed a warning. std::vector<ChunkTimeInfo> chunks; utt_splitter->GetChunksForUtterance(num_input_frames, &chunks); if (chunks.empty()) { KALDI_WARN << "Not producing egs for utterance " << utt_id << " because it is too short: " << num_input_frames << " frames."; } // 'frame_subsampling_factor' is not used in any recipes at the time of // writing, this is being supported to unify the code with the 'chain' recipes // and in case we need it for some reason in future. int32 frame_subsampling_factor = utt_splitter->Config().frame_subsampling_factor; for (size_t c = 0; c < chunks.size(); c++) { const ChunkTimeInfo &chunk = chunks[c]; int32 tot_input_frames = chunk.left_context + chunk.num_frames + chunk.right_context; int32 start_frame = chunk.first_frame - chunk.left_context; GeneralMatrix input_frames; ExtractRowRangeWithPadding(feats, start_frame, tot_input_frames, &input_frames); // 'input_frames' now stores the relevant rows (maybe with padding) from the // original Matrix or (more likely) CompressedMatrix. If a CompressedMatrix, // it does this without un-compressing and re-compressing, so there is no loss // of accuracy. NnetExample eg; // call the regular input "input". eg.io.push_back(NnetIo("input", -chunk.left_context, input_frames)); if (ivector_feats != NULL) { // if applicable, add the iVector feature. // choose iVector from a random frame in the chunk int32 ivector_frame = RandInt(start_frame, start_frame + num_input_frames - 1), ivector_frame_subsampled = ivector_frame / ivector_period; if (ivector_frame_subsampled < 0) ivector_frame_subsampled = 0; if (ivector_frame_subsampled >= ivector_feats->NumRows()) ivector_frame_subsampled = ivector_feats->NumRows() - 1; Matrix<BaseFloat> ivector(1, ivector_feats->NumCols()); ivector.Row(0).CopyFromVec(ivector_feats->Row(ivector_frame_subsampled)); eg.io.push_back(NnetIo("ivector", 0, ivector)); } // Note: chunk.first_frame and chunk.num_frames will both be // multiples of frame_subsampling_factor. int32 start_frame_subsampled = chunk.first_frame / frame_subsampling_factor, num_frames_subsampled = chunk.num_frames / frame_subsampling_factor; Posterior labels(num_frames_subsampled); // TODO: it may be that using these weights is not actually helpful (with // chain training, it was not), and that setting them all to 1 is better. // We could add a boolean option to this program to control that; but I // don't want to add such an option if experiments show that it is not // helpful. for (int32 i = 0; i < num_frames_subsampled; i++) { int32 t = i + start_frame_subsampled; if (t < pdf_post.size()) labels[i] = pdf_post[t]; for (std::vector<std::pair<int32, BaseFloat> >::iterator iter = labels[i].begin(); iter != labels[i].end(); ++iter) iter->second *= chunk.output_weights[i]; } eg.io.push_back(NnetIo("output", num_pdfs, 0, labels, frame_subsampling_factor)); if (compress) eg.Compress(); std::ostringstream os; os << utt_id << "-" << chunk.first_frame; std::string key = os.str(); // key is <utt_id>-<frame_id> example_writer->Write(key, eg); } return true; } } // namespace nnet3 } // namespace kaldi int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::nnet3; typedef kaldi::int32 int32; typedef kaldi::int64 int64; const char *usage = "Get frame-by-frame examples of data for nnet3 neural network training. " "Essentially this is a format change from features and posteriors " "into a special frame-by-frame format. This program handles the " "common case where you have some input features, possibly some " "iVectors, and one set of labels. If people in future want to " "do different things they may have to extend this program or create " "different versions of it for different tasks (the egs format is quite " "general) " " " "Usage: nnet3-get-egs [options] <features-rspecifier> " "<pdf-post-rspecifier> <egs-out> " " " "An example [where $feats expands to the actual features]: " "nnet3-get-egs --num-pdfs=2658 --left-context=12 --right-context=9 --num-frames=8 \"$feats\"\\ " "\"ark:gunzip -c exp/nnet/ali.1.gz | ali-to-pdf exp/nnet/1.nnet ark:- ark:- | ali-to-post ark:- ark:- |\" \\ " " ark:- " "See also: nnet3-chain-get-egs, nnet3-get-egs-simple "; bool compress = true; int32 num_pdfs = -1, length_tolerance = 100, targets_length_tolerance = 2, online_ivector_period = 1; ExampleGenerationConfig eg_config; // controls num-frames, // left/right-context, etc. std::string online_ivector_rspecifier; ParseOptions po(usage); po.Register("compress", &compress, "If true, write egs with input features " "in compressed format (recommended). This is " "only relevant if the features being read are un-compressed; " "if already compressed, we keep we same compressed format when " "dumping egs."); po.Register("num-pdfs", &num_pdfs, "Number of pdfs in the acoustic " "model"); po.Register("ivectors", &online_ivector_rspecifier, "Alias for " "--online-ivectors option, for back compatibility"); po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier of " "ivector features, as a matrix."); po.Register("online-ivector-period", &online_ivector_period, "Number of " "frames between iVectors in matrices supplied to the " "--online-ivectors option"); po.Register("length-tolerance", &length_tolerance, "Tolerance for " "difference in num-frames between feat and ivector matrices"); po.Register("targets-length-tolerance", &targets_length_tolerance, "Tolerance for " "difference in num-frames (after subsampling) between " "feature matrix and posterior"); eg_config.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 3) { po.PrintUsage(); exit(1); } if (num_pdfs <= 0) KALDI_ERR << "--num-pdfs options is required."; eg_config.ComputeDerived(); UtteranceSplitter utt_splitter(eg_config); std::string feature_rspecifier = po.GetArg(1), pdf_post_rspecifier = po.GetArg(2), examples_wspecifier = po.GetArg(3); // SequentialGeneralMatrixReader can read either a Matrix or // CompressedMatrix (or SparseMatrix, but not as relevant here), // and it retains the type. This way, we can generate parts of // the feature matrices without uncompressing and re-compressing. SequentialGeneralMatrixReader feat_reader(feature_rspecifier); RandomAccessPosteriorReader pdf_post_reader(pdf_post_rspecifier); NnetExampleWriter example_writer(examples_wspecifier); RandomAccessBaseFloatMatrixReader online_ivector_reader( online_ivector_rspecifier); int32 num_err = 0; for (; !feat_reader.Done(); feat_reader.Next()) { std::string key = feat_reader.Key(); const GeneralMatrix &feats = feat_reader.Value(); if (!pdf_post_reader.HasKey(key)) { KALDI_WARN << "No pdf-level posterior for key " << key; num_err++; } else { const Posterior &pdf_post = pdf_post_reader.Value(key); const Matrix<BaseFloat> *online_ivector_feats = NULL; if (!online_ivector_rspecifier.empty()) { if (!online_ivector_reader.HasKey(key)) { KALDI_WARN << "No iVectors for utterance " << key; num_err++; continue; } else { // this address will be valid until we call HasKey() or Value() // again. online_ivector_feats = &(online_ivector_reader.Value(key)); } } if (online_ivector_feats != NULL && (abs(feats.NumRows() - (online_ivector_feats->NumRows() * online_ivector_period)) > length_tolerance || online_ivector_feats->NumRows() == 0)) { KALDI_WARN << "Length difference between feats " << feats.NumRows() << " and iVectors " << online_ivector_feats->NumRows() << "exceeds tolerance " << length_tolerance; num_err++; continue; } if (!ProcessFile(feats, online_ivector_feats, online_ivector_period, pdf_post, key, compress, num_pdfs, targets_length_tolerance, &utt_splitter, &example_writer)) num_err++; } } if (num_err > 0) KALDI_WARN << num_err << " utterances had errors and could " "not be processed."; // utt_splitter prints stats in its destructor. return utt_splitter.ExitStatus(); } catch(const std::exception &e) { std::cerr << e.what() << ' '; return -1; } } |