nnet3-get-egs.cc 11 KB
// nnet3bin/nnet3-get-egs.cc

// Copyright 2012-2015  Johns Hopkins University (author:  Daniel Povey)
//                2014  Vimal Manohar

// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//  http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.

#include <sstream>
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "hmm/transition-model.h"
#include "hmm/posterior.h"
#include "nnet3/nnet-example.h"
#include "nnet3/nnet-example-utils.h"

namespace kaldi {
namespace nnet3 {


static bool ProcessFile(const GeneralMatrix &feats,
                        const MatrixBase<BaseFloat> *ivector_feats,
                        int32 ivector_period,
                        const Posterior &pdf_post,
                        const std::string &utt_id,
                        bool compress,
                        int32 num_pdfs,
                        int32 length_tolerance,
                        UtteranceSplitter *utt_splitter,
                        NnetExampleWriter *example_writer) {
  int32 num_input_frames = feats.NumRows();
  if (!utt_splitter->LengthsMatch(utt_id, num_input_frames,
                                  static_cast<int32>(pdf_post.size()),
                                  length_tolerance))
    return false;  // LengthsMatch() will have printed a warning.

  std::vector<ChunkTimeInfo> chunks;

  utt_splitter->GetChunksForUtterance(num_input_frames, &chunks);

  if (chunks.empty()) {
    KALDI_WARN << "Not producing egs for utterance " << utt_id
               << " because it is too short: "
               << num_input_frames << " frames.";
  }

  // 'frame_subsampling_factor' is not used in any recipes at the time of
  // writing, this is being supported to unify the code with the 'chain' recipes
  // and in case we need it for some reason in future.
  int32 frame_subsampling_factor =
      utt_splitter->Config().frame_subsampling_factor;

  for (size_t c = 0; c < chunks.size(); c++) {
    const ChunkTimeInfo &chunk = chunks[c];

    int32 tot_input_frames = chunk.left_context + chunk.num_frames +
        chunk.right_context;

    int32 start_frame = chunk.first_frame - chunk.left_context;

    GeneralMatrix input_frames;
    ExtractRowRangeWithPadding(feats, start_frame, tot_input_frames,
                               &input_frames);

    // 'input_frames' now stores the relevant rows (maybe with padding) from the
    // original Matrix or (more likely) CompressedMatrix.  If a CompressedMatrix,
    // it does this without un-compressing and re-compressing, so there is no loss
    // of accuracy.

    NnetExample eg;
    // call the regular input "input".
    eg.io.push_back(NnetIo("input", -chunk.left_context, input_frames));

    if (ivector_feats != NULL) {
      // if applicable, add the iVector feature.
      // choose iVector from a random frame in the chunk
      int32 ivector_frame = RandInt(start_frame,
                                    start_frame + num_input_frames - 1),
          ivector_frame_subsampled = ivector_frame / ivector_period;
      if (ivector_frame_subsampled < 0)
        ivector_frame_subsampled = 0;
      if (ivector_frame_subsampled >= ivector_feats->NumRows())
        ivector_frame_subsampled = ivector_feats->NumRows() - 1;
      Matrix<BaseFloat> ivector(1, ivector_feats->NumCols());
      ivector.Row(0).CopyFromVec(ivector_feats->Row(ivector_frame_subsampled));
      eg.io.push_back(NnetIo("ivector", 0, ivector));
    }

    // Note: chunk.first_frame and chunk.num_frames will both be
    // multiples of frame_subsampling_factor.
    int32 start_frame_subsampled = chunk.first_frame / frame_subsampling_factor,
        num_frames_subsampled = chunk.num_frames / frame_subsampling_factor;

    Posterior labels(num_frames_subsampled);

    // TODO: it may be that using these weights is not actually helpful (with
    // chain training, it was not), and that setting them all to 1 is better.
    // We could add a boolean option to this program to control that; but I
    // don't want to add such an option if experiments show that it is not
    // helpful.
    for (int32 i = 0; i < num_frames_subsampled; i++) {
      int32 t = i + start_frame_subsampled;
      if (t < pdf_post.size())
        labels[i] = pdf_post[t];
      for (std::vector<std::pair<int32, BaseFloat> >::iterator
               iter = labels[i].begin(); iter != labels[i].end(); ++iter)
        iter->second *= chunk.output_weights[i];
    }

    eg.io.push_back(NnetIo("output", num_pdfs, 0, labels, frame_subsampling_factor));

    if (compress)
      eg.Compress();

    std::ostringstream os;
    os << utt_id << "-" << chunk.first_frame;

    std::string key = os.str(); // key is <utt_id>-<frame_id>

    example_writer->Write(key, eg);
  }
  return true;
}

} // namespace nnet3
} // namespace kaldi

int main(int argc, char *argv[]) {
  try {
    using namespace kaldi;
    using namespace kaldi::nnet3;
    typedef kaldi::int32 int32;
    typedef kaldi::int64 int64;

    const char *usage =
        "Get frame-by-frame examples of data for nnet3 neural network training.\n"
        "Essentially this is a format change from features and posteriors\n"
        "into a special frame-by-frame format.  This program handles the\n"
        "common case where you have some input features, possibly some\n"
        "iVectors, and one set of labels.  If people in future want to\n"
        "do different things they may have to extend this program or create\n"
        "different versions of it for different tasks (the egs format is quite\n"
        "general)\n"
        "\n"
        "Usage:  nnet3-get-egs [options] <features-rspecifier> "
        "<pdf-post-rspecifier> <egs-out>\n"
        "\n"
        "An example [where $feats expands to the actual features]:\n"
        "nnet3-get-egs --num-pdfs=2658 --left-context=12 --right-context=9 --num-frames=8 \"$feats\"\\\n"
        "\"ark:gunzip -c exp/nnet/ali.1.gz | ali-to-pdf exp/nnet/1.nnet ark:- ark:- | ali-to-post ark:- ark:- |\" \\\n"
        "   ark:- \n"
        "See also: nnet3-chain-get-egs, nnet3-get-egs-simple\n";


    bool compress = true;
    int32 num_pdfs = -1, length_tolerance = 100,
        targets_length_tolerance = 2,  
        online_ivector_period = 1;

    ExampleGenerationConfig eg_config;  // controls num-frames,
                                        // left/right-context, etc.

    std::string online_ivector_rspecifier;

    ParseOptions po(usage);

    po.Register("compress", &compress, "If true, write egs with input features "
                "in compressed format (recommended).  This is "
                "only relevant if the features being read are un-compressed; "
                "if already compressed, we keep we same compressed format when "
                "dumping egs.");
    po.Register("num-pdfs", &num_pdfs, "Number of pdfs in the acoustic "
                "model");
    po.Register("ivectors", &online_ivector_rspecifier, "Alias for "
                "--online-ivectors option, for back compatibility");
    po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier of "
                "ivector features, as a matrix.");
    po.Register("online-ivector-period", &online_ivector_period, "Number of "
                "frames between iVectors in matrices supplied to the "
                "--online-ivectors option");
    po.Register("length-tolerance", &length_tolerance, "Tolerance for "
                "difference in num-frames between feat and ivector matrices");
    po.Register("targets-length-tolerance", &targets_length_tolerance, 
                "Tolerance for "
                "difference in num-frames (after subsampling) between "
                "feature matrix and posterior");
    eg_config.Register(&po);

    po.Read(argc, argv);

    if (po.NumArgs() != 3) {
      po.PrintUsage();
      exit(1);
    }

    if (num_pdfs <= 0)
      KALDI_ERR << "--num-pdfs options is required.";

    eg_config.ComputeDerived();
    UtteranceSplitter utt_splitter(eg_config);

    std::string feature_rspecifier = po.GetArg(1),
        pdf_post_rspecifier = po.GetArg(2),
        examples_wspecifier = po.GetArg(3);

    // SequentialGeneralMatrixReader can read either a Matrix or
    // CompressedMatrix (or SparseMatrix, but not as relevant here),
    // and it retains the type.  This way, we can generate parts of
    // the feature matrices without uncompressing and re-compressing.
    SequentialGeneralMatrixReader feat_reader(feature_rspecifier);
    RandomAccessPosteriorReader pdf_post_reader(pdf_post_rspecifier);
    NnetExampleWriter example_writer(examples_wspecifier);
    RandomAccessBaseFloatMatrixReader online_ivector_reader(
        online_ivector_rspecifier);

    int32 num_err = 0;

    for (; !feat_reader.Done(); feat_reader.Next()) {
      std::string key = feat_reader.Key();
      const GeneralMatrix &feats = feat_reader.Value();
      if (!pdf_post_reader.HasKey(key)) {
        KALDI_WARN << "No pdf-level posterior for key " << key;
        num_err++;
      } else {
        const Posterior &pdf_post = pdf_post_reader.Value(key);
        const Matrix<BaseFloat> *online_ivector_feats = NULL;
        if (!online_ivector_rspecifier.empty()) {
          if (!online_ivector_reader.HasKey(key)) {
            KALDI_WARN << "No iVectors for utterance " << key;
            num_err++;
            continue;
          } else {
            // this address will be valid until we call HasKey() or Value()
            // again.
            online_ivector_feats = &(online_ivector_reader.Value(key));
          }
        }

        if (online_ivector_feats != NULL &&
            (abs(feats.NumRows() - (online_ivector_feats->NumRows() *
                                    online_ivector_period)) > length_tolerance
             || online_ivector_feats->NumRows() == 0)) {
          KALDI_WARN << "Length difference between feats " << feats.NumRows()
                     << " and iVectors " << online_ivector_feats->NumRows()
                     << "exceeds tolerance " << length_tolerance;
          num_err++;
          continue;
        }

        if (!ProcessFile(feats, online_ivector_feats, online_ivector_period,
                         pdf_post, key, compress, num_pdfs, 
                         targets_length_tolerance,
                         &utt_splitter, &example_writer))
          num_err++;
      }
    }
    if (num_err > 0)
      KALDI_WARN << num_err << " utterances had errors and could "
          "not be processed.";
    // utt_splitter prints stats in its destructor.
    return utt_splitter.ExitStatus();
  } catch(const std::exception &e) {
    std::cerr << e.what() << '\n';
    return -1;
  }
}