nnet3-get-egs.cc
11 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// nnet3bin/nnet3-get-egs.cc
// Copyright 2012-2015 Johns Hopkins University (author: Daniel Povey)
// 2014 Vimal Manohar
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
#include "base/kaldi-common.h"
#include "util/common-utils.h"
#include "hmm/transition-model.h"
#include "hmm/posterior.h"
#include "nnet3/nnet-example.h"
#include "nnet3/nnet-example-utils.h"
namespace kaldi {
namespace nnet3 {
static bool ProcessFile(const GeneralMatrix &feats,
const MatrixBase<BaseFloat> *ivector_feats,
int32 ivector_period,
const Posterior &pdf_post,
const std::string &utt_id,
bool compress,
int32 num_pdfs,
int32 length_tolerance,
UtteranceSplitter *utt_splitter,
NnetExampleWriter *example_writer) {
int32 num_input_frames = feats.NumRows();
if (!utt_splitter->LengthsMatch(utt_id, num_input_frames,
static_cast<int32>(pdf_post.size()),
length_tolerance))
return false; // LengthsMatch() will have printed a warning.
std::vector<ChunkTimeInfo> chunks;
utt_splitter->GetChunksForUtterance(num_input_frames, &chunks);
if (chunks.empty()) {
KALDI_WARN << "Not producing egs for utterance " << utt_id
<< " because it is too short: "
<< num_input_frames << " frames.";
}
// 'frame_subsampling_factor' is not used in any recipes at the time of
// writing, this is being supported to unify the code with the 'chain' recipes
// and in case we need it for some reason in future.
int32 frame_subsampling_factor =
utt_splitter->Config().frame_subsampling_factor;
for (size_t c = 0; c < chunks.size(); c++) {
const ChunkTimeInfo &chunk = chunks[c];
int32 tot_input_frames = chunk.left_context + chunk.num_frames +
chunk.right_context;
int32 start_frame = chunk.first_frame - chunk.left_context;
GeneralMatrix input_frames;
ExtractRowRangeWithPadding(feats, start_frame, tot_input_frames,
&input_frames);
// 'input_frames' now stores the relevant rows (maybe with padding) from the
// original Matrix or (more likely) CompressedMatrix. If a CompressedMatrix,
// it does this without un-compressing and re-compressing, so there is no loss
// of accuracy.
NnetExample eg;
// call the regular input "input".
eg.io.push_back(NnetIo("input", -chunk.left_context, input_frames));
if (ivector_feats != NULL) {
// if applicable, add the iVector feature.
// choose iVector from a random frame in the chunk
int32 ivector_frame = RandInt(start_frame,
start_frame + num_input_frames - 1),
ivector_frame_subsampled = ivector_frame / ivector_period;
if (ivector_frame_subsampled < 0)
ivector_frame_subsampled = 0;
if (ivector_frame_subsampled >= ivector_feats->NumRows())
ivector_frame_subsampled = ivector_feats->NumRows() - 1;
Matrix<BaseFloat> ivector(1, ivector_feats->NumCols());
ivector.Row(0).CopyFromVec(ivector_feats->Row(ivector_frame_subsampled));
eg.io.push_back(NnetIo("ivector", 0, ivector));
}
// Note: chunk.first_frame and chunk.num_frames will both be
// multiples of frame_subsampling_factor.
int32 start_frame_subsampled = chunk.first_frame / frame_subsampling_factor,
num_frames_subsampled = chunk.num_frames / frame_subsampling_factor;
Posterior labels(num_frames_subsampled);
// TODO: it may be that using these weights is not actually helpful (with
// chain training, it was not), and that setting them all to 1 is better.
// We could add a boolean option to this program to control that; but I
// don't want to add such an option if experiments show that it is not
// helpful.
for (int32 i = 0; i < num_frames_subsampled; i++) {
int32 t = i + start_frame_subsampled;
if (t < pdf_post.size())
labels[i] = pdf_post[t];
for (std::vector<std::pair<int32, BaseFloat> >::iterator
iter = labels[i].begin(); iter != labels[i].end(); ++iter)
iter->second *= chunk.output_weights[i];
}
eg.io.push_back(NnetIo("output", num_pdfs, 0, labels, frame_subsampling_factor));
if (compress)
eg.Compress();
std::ostringstream os;
os << utt_id << "-" << chunk.first_frame;
std::string key = os.str(); // key is <utt_id>-<frame_id>
example_writer->Write(key, eg);
}
return true;
}
} // namespace nnet3
} // namespace kaldi
int main(int argc, char *argv[]) {
try {
using namespace kaldi;
using namespace kaldi::nnet3;
typedef kaldi::int32 int32;
typedef kaldi::int64 int64;
const char *usage =
"Get frame-by-frame examples of data for nnet3 neural network training.\n"
"Essentially this is a format change from features and posteriors\n"
"into a special frame-by-frame format. This program handles the\n"
"common case where you have some input features, possibly some\n"
"iVectors, and one set of labels. If people in future want to\n"
"do different things they may have to extend this program or create\n"
"different versions of it for different tasks (the egs format is quite\n"
"general)\n"
"\n"
"Usage: nnet3-get-egs [options] <features-rspecifier> "
"<pdf-post-rspecifier> <egs-out>\n"
"\n"
"An example [where $feats expands to the actual features]:\n"
"nnet3-get-egs --num-pdfs=2658 --left-context=12 --right-context=9 --num-frames=8 \"$feats\"\\\n"
"\"ark:gunzip -c exp/nnet/ali.1.gz | ali-to-pdf exp/nnet/1.nnet ark:- ark:- | ali-to-post ark:- ark:- |\" \\\n"
" ark:- \n"
"See also: nnet3-chain-get-egs, nnet3-get-egs-simple\n";
bool compress = true;
int32 num_pdfs = -1, length_tolerance = 100,
targets_length_tolerance = 2,
online_ivector_period = 1;
ExampleGenerationConfig eg_config; // controls num-frames,
// left/right-context, etc.
std::string online_ivector_rspecifier;
ParseOptions po(usage);
po.Register("compress", &compress, "If true, write egs with input features "
"in compressed format (recommended). This is "
"only relevant if the features being read are un-compressed; "
"if already compressed, we keep we same compressed format when "
"dumping egs.");
po.Register("num-pdfs", &num_pdfs, "Number of pdfs in the acoustic "
"model");
po.Register("ivectors", &online_ivector_rspecifier, "Alias for "
"--online-ivectors option, for back compatibility");
po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier of "
"ivector features, as a matrix.");
po.Register("online-ivector-period", &online_ivector_period, "Number of "
"frames between iVectors in matrices supplied to the "
"--online-ivectors option");
po.Register("length-tolerance", &length_tolerance, "Tolerance for "
"difference in num-frames between feat and ivector matrices");
po.Register("targets-length-tolerance", &targets_length_tolerance,
"Tolerance for "
"difference in num-frames (after subsampling) between "
"feature matrix and posterior");
eg_config.Register(&po);
po.Read(argc, argv);
if (po.NumArgs() != 3) {
po.PrintUsage();
exit(1);
}
if (num_pdfs <= 0)
KALDI_ERR << "--num-pdfs options is required.";
eg_config.ComputeDerived();
UtteranceSplitter utt_splitter(eg_config);
std::string feature_rspecifier = po.GetArg(1),
pdf_post_rspecifier = po.GetArg(2),
examples_wspecifier = po.GetArg(3);
// SequentialGeneralMatrixReader can read either a Matrix or
// CompressedMatrix (or SparseMatrix, but not as relevant here),
// and it retains the type. This way, we can generate parts of
// the feature matrices without uncompressing and re-compressing.
SequentialGeneralMatrixReader feat_reader(feature_rspecifier);
RandomAccessPosteriorReader pdf_post_reader(pdf_post_rspecifier);
NnetExampleWriter example_writer(examples_wspecifier);
RandomAccessBaseFloatMatrixReader online_ivector_reader(
online_ivector_rspecifier);
int32 num_err = 0;
for (; !feat_reader.Done(); feat_reader.Next()) {
std::string key = feat_reader.Key();
const GeneralMatrix &feats = feat_reader.Value();
if (!pdf_post_reader.HasKey(key)) {
KALDI_WARN << "No pdf-level posterior for key " << key;
num_err++;
} else {
const Posterior &pdf_post = pdf_post_reader.Value(key);
const Matrix<BaseFloat> *online_ivector_feats = NULL;
if (!online_ivector_rspecifier.empty()) {
if (!online_ivector_reader.HasKey(key)) {
KALDI_WARN << "No iVectors for utterance " << key;
num_err++;
continue;
} else {
// this address will be valid until we call HasKey() or Value()
// again.
online_ivector_feats = &(online_ivector_reader.Value(key));
}
}
if (online_ivector_feats != NULL &&
(abs(feats.NumRows() - (online_ivector_feats->NumRows() *
online_ivector_period)) > length_tolerance
|| online_ivector_feats->NumRows() == 0)) {
KALDI_WARN << "Length difference between feats " << feats.NumRows()
<< " and iVectors " << online_ivector_feats->NumRows()
<< "exceeds tolerance " << length_tolerance;
num_err++;
continue;
}
if (!ProcessFile(feats, online_ivector_feats, online_ivector_period,
pdf_post, key, compress, num_pdfs,
targets_length_tolerance,
&utt_splitter, &example_writer))
num_err++;
}
}
if (num_err > 0)
KALDI_WARN << num_err << " utterances had errors and could "
"not be processed.";
// utt_splitter prints stats in its destructor.
return utt_splitter.ExitStatus();
} catch(const std::exception &e) {
std::cerr << e.what() << '\n';
return -1;
}
}