Blame view

src/nnet3bin/nnet3-latgen-faster-parallel.cc 10.9 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
  // nnet3bin/nnet3-latgen-faster-parallel.cc
  
  // Copyright 2012-2016   Johns Hopkins University (author: Daniel Povey)
  //                2014   Guoguo Chen
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  
  #include "base/timer.h"
  #include "base/kaldi-common.h"
  #include "decoder/decoder-wrappers.h"
  #include "fstext/fstext-lib.h"
  #include "hmm/transition-model.h"
  #include "nnet3/nnet-am-decodable-simple.h"
  #include "nnet3/nnet-utils.h"
  #include "util/kaldi-thread.h"
  #include "tree/context-dep.h"
  #include "util/common-utils.h"
  
  
  
  int main(int argc, char *argv[]) {
    // note: making this program work with GPUs is as simple as initializing the
    // device, but it probably won't make a huge difference in speed for typical
    // setups.
    try {
      using namespace kaldi;
      using namespace kaldi::nnet3;
      typedef kaldi::int32 int32;
      using fst::SymbolTable;
      using fst::Fst;
      using fst::StdArc;
  
      const char *usage =
          "Generate lattices using nnet3 neural net model.  This version supports
  "
          "multiple decoding threads (using a shared decoding graph.)
  "
          "Usage: nnet3-latgen-faster-parallel [options] <nnet-in> <fst-in|fsts-rspecifier> <features-rspecifier>"
          " <lattice-wspecifier> [ <words-wspecifier> [<alignments-wspecifier>] ]
  "
          "See also: nnet3-latgen-faster-batch (which supports GPUs)
  ";
      ParseOptions po(usage);
  
      Timer timer;
      bool allow_partial = false;
      TaskSequencerConfig sequencer_config; // has --num-threads option
      LatticeFasterDecoderConfig config;
      NnetSimpleComputationOptions decodable_opts;
  
      std::string word_syms_filename;
      std::string ivector_rspecifier,
          online_ivector_rspecifier,
          utt2spk_rspecifier;
      int32 online_ivector_period = 0;
      sequencer_config.Register(&po);
      config.Register(&po);
      decodable_opts.Register(&po);
      po.Register("word-symbol-table", &word_syms_filename,
                  "Symbol table for words [for debug output]");
      po.Register("allow-partial", &allow_partial,
                  "If true, produce output even if end state was not reached.");
      po.Register("ivectors", &ivector_rspecifier, "Rspecifier for "
                  "iVectors as vectors (i.e. not estimated online); per utterance "
                  "by default, or per speaker if you provide the --utt2spk option.");
      po.Register("online-ivectors", &online_ivector_rspecifier, "Rspecifier for "
                  "iVectors estimated online, as matrices.  If you supply this,"
                  " you must set the --online-ivector-period option.");
      po.Register("online-ivector-period", &online_ivector_period, "Number of frames "
                  "between iVectors in matrices supplied to the --online-ivectors "
                  "option");
  
      po.Read(argc, argv);
  
      if (po.NumArgs() < 4 || po.NumArgs() > 6) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string model_in_filename = po.GetArg(1),
          fst_in_str = po.GetArg(2),
          feature_rspecifier = po.GetArg(3),
          lattice_wspecifier = po.GetArg(4),
          words_wspecifier = po.GetOptArg(5),
          alignment_wspecifier = po.GetOptArg(6);
  
      TaskSequencer<DecodeUtteranceLatticeFasterClass> sequencer(sequencer_config);
      TransitionModel trans_model;
      AmNnetSimple am_nnet;
      {
        bool binary;
        Input ki(model_in_filename, &binary);
        trans_model.Read(ki.Stream(), binary);
        am_nnet.Read(ki.Stream(), binary);
        SetBatchnormTestMode(true, &(am_nnet.GetNnet()));
        SetDropoutTestMode(true, &(am_nnet.GetNnet()));
        CollapseModel(CollapseModelConfig(), &(am_nnet.GetNnet()));
      }
  
      bool determinize = config.determinize_lattice;
      CompactLatticeWriter compact_lattice_writer;
      LatticeWriter lattice_writer;
      if (! (determinize ? compact_lattice_writer.Open(lattice_wspecifier)
             : lattice_writer.Open(lattice_wspecifier)))
        KALDI_ERR << "Could not open table for writing lattices: "
                   << lattice_wspecifier;
  
      RandomAccessBaseFloatMatrixReader online_ivector_reader(
          online_ivector_rspecifier);
      RandomAccessBaseFloatVectorReaderMapped ivector_reader(
          ivector_rspecifier, utt2spk_rspecifier);
  
      Int32VectorWriter words_writer(words_wspecifier);
      Int32VectorWriter alignment_writer(alignment_wspecifier);
  
      fst::SymbolTable *word_syms = NULL;
      if (word_syms_filename != "")
        if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename)))
          KALDI_ERR << "Could not read symbol table from file "
                     << word_syms_filename;
  
      double tot_like = 0.0;
      kaldi::int64 frame_count = 0;
      int num_success = 0, num_fail = 0;
  
      if (ClassifyRspecifier(fst_in_str, NULL, NULL) == kNoRspecifier) {
        SequentialBaseFloatMatrixReader feature_reader(feature_rspecifier);
  
        // Input FST is just one FST, not a table of FSTs.
        Fst<StdArc> *decode_fst = fst::ReadFstKaldiGeneric(fst_in_str);
        timer.Reset();
  
        {
          for (; !feature_reader.Done(); feature_reader.Next()) {
            std::string utt = feature_reader.Key();
            const Matrix<BaseFloat> &features (feature_reader.Value());
            if (features.NumRows() == 0) {
              KALDI_WARN << "Zero-length utterance: " << utt;
              num_fail++;
              continue;
            }
            const Matrix<BaseFloat> *online_ivectors = NULL;
            const Vector<BaseFloat> *ivector = NULL;
            if (!ivector_rspecifier.empty()) {
              if (!ivector_reader.HasKey(utt)) {
                KALDI_WARN << "No iVector available for utterance " << utt;
                num_fail++;
                continue;
              } else {
                ivector = &ivector_reader.Value(utt);
              }
            }
            if (!online_ivector_rspecifier.empty()) {
              if (!online_ivector_reader.HasKey(utt)) {
                KALDI_WARN << "No online iVector available for utterance " << utt;
                num_fail++;
                continue;
              } else {
                online_ivectors = &online_ivector_reader.Value(utt);
              }
            }
  
            LatticeFasterDecoder *decoder =
                new LatticeFasterDecoder(*decode_fst, config);
  
            DecodableInterface *nnet_decodable = new
                DecodableAmNnetSimpleParallel(
                    decodable_opts, trans_model, am_nnet,
                    features, ivector, online_ivectors,
                    online_ivector_period);
  
            DecodeUtteranceLatticeFasterClass *task =
                new DecodeUtteranceLatticeFasterClass(
                    decoder, nnet_decodable, // takes ownership of these two.
                    trans_model, word_syms, utt, decodable_opts.acoustic_scale,
                    determinize, allow_partial, &alignment_writer, &words_writer,
                     &compact_lattice_writer, &lattice_writer,
                     &tot_like, &frame_count, &num_success, &num_fail, NULL);
  
            sequencer.Run(task); // takes ownership of "task",
                                 // and will delete it when done.
          }
        }
        sequencer.Wait(); // Waits for all tasks to be done.
        delete decode_fst;
      } else { // We have different FSTs for different utterances.
        SequentialTableReader<fst::VectorFstHolder> fst_reader(fst_in_str);
        RandomAccessBaseFloatMatrixReader feature_reader(feature_rspecifier);
        for (; !fst_reader.Done(); fst_reader.Next()) {
          std::string utt = fst_reader.Key();
          if (!feature_reader.HasKey(utt)) {
            KALDI_WARN << "Not decoding utterance " << utt
                       << " because no features available.";
            num_fail++;
            continue;
          }
          const Matrix<BaseFloat> &features = feature_reader.Value(utt);
          if (features.NumRows() == 0) {
            KALDI_WARN << "Zero-length utterance: " << utt;
            num_fail++;
            continue;
          }
  
          const Matrix<BaseFloat> *online_ivectors = NULL;
          const Vector<BaseFloat> *ivector = NULL;
          if (!ivector_rspecifier.empty()) {
            if (!ivector_reader.HasKey(utt)) {
              KALDI_WARN << "No iVector available for utterance " << utt;
              num_fail++;
              continue;
            } else {
              ivector = &ivector_reader.Value(utt);
            }
          }
          if (!online_ivector_rspecifier.empty()) {
            if (!online_ivector_reader.HasKey(utt)) {
              KALDI_WARN << "No online iVector available for utterance " << utt;
              num_fail++;
              continue;
            } else {
              online_ivectors = &online_ivector_reader.Value(utt);
            }
          }
  
          // the following constructor takes ownership of the FST pointer so that
          // it is deleted when 'decoder' is deleted.
          LatticeFasterDecoder *decoder =
              new LatticeFasterDecoder(config, fst_reader.Value().Copy());
  
          DecodableInterface *nnet_decodable = new
              DecodableAmNnetSimpleParallel(
                  decodable_opts, trans_model, am_nnet,
                  features, ivector, online_ivectors,
                  online_ivector_period);
  
          DecodeUtteranceLatticeFasterClass *task =
              new DecodeUtteranceLatticeFasterClass(
                  decoder, nnet_decodable, // takes ownership of these two.
                  trans_model, word_syms, utt, decodable_opts.acoustic_scale,
                  determinize, allow_partial, &alignment_writer, &words_writer,
                  &compact_lattice_writer, &lattice_writer,
                  &tot_like, &frame_count, &num_success, &num_fail, NULL);
  
          sequencer.Run(task); // takes ownership of "task",
          // and will delete it when done.
        }
        sequencer.Wait(); // Waits for all tasks to be done.
      }
  
      kaldi::int64 input_frame_count =
          frame_count * decodable_opts.frame_subsampling_factor;
  
      double elapsed = timer.Elapsed();
      KALDI_LOG << "Time taken " << elapsed
                << "s: real-time factor assuming 100 feature frames/sec is "
                << (sequencer_config.num_threads * elapsed * 100.0 /
                    input_frame_count);
      KALDI_LOG << "Done " << num_success << " utterances, failed for "
                << num_fail;
      KALDI_LOG << "Overall log-likelihood per frame is "
                << (tot_like / frame_count) << " over "
                << frame_count << " frames.";
  
      delete word_syms;
      if (num_success != 0) return 0;
      else return 1;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }