Blame view

src/nnetbin/nnet-set-learnrate.cc 3.43 KB
8dcb6dfcb   Yannick Estève   first commit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
  // nnetbin/nnet-set-learnrate.cc
  
  // Copyright 2016,  Brno University of Technology
  //                  (author: Katerina Zmolikova, Karel Vesely)
  
  // See ../../COPYING for clarification regarding multiple authors
  //
  // Licensed under the Apache License, Version 2.0 (the "License");
  // you may not use this file except in compliance with the License.
  // You may obtain a copy of the License at
  //
  //  http://www.apache.org/licenses/LICENSE-2.0
  //
  // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
  // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
  // MERCHANTABLITY OR NON-INFRINGEMENT.
  // See the Apache 2 License for the specific language governing permissions and
  // limitations under the License.
  
  #include "util/common-utils.h"
  #include "nnet/nnet-nnet.h"
  #include "nnet/nnet-component.h"
  #include "nnet/nnet-affine-transform.h"
  #include "nnet/nnet-activation.h"
  
  int main(int argc, char *argv[]) {
    try {
      using namespace kaldi;
      using namespace kaldi::nnet1;
      typedef kaldi::int32 int32;
  
      const char *usage =
        "Sets learning rate coefficient inside of 'nnet1' model
  "
        "Usage: nnet-set-learnrate --components=<csl> --coef=<float> <nnet-in> <nnet-out>
  "
        "e.g.: nnet-set-learnrate --components=1:3:5 --coef=0.5 --bias-coef=0.1 nnet-in nnet-out
  ";
  
      ParseOptions po(usage);
      bool binary = true;
      po.Register("binary", &binary, "Write output in binary mode");
  
      std::string components_str = "";
      po.Register("components", &components_str,
          "Select components by 'csl' of 1..N values. Layout is the same as in "
          "'nnet-info' output, (example 1:3:5)");
  
      float coef = 1.0,
            weight_coef = 1.0,
            bias_coef = 1.0;
  
      po.Register("coef", &coef,
          "Learn-rate coefficient for both weight matrices and biases.");
      po.Register("weight-coef", &weight_coef,
          "Learn-rate coefficient for weight matrices "
          "(used as: coef * weight_coef).");
      po.Register("bias-coef", &bias_coef,
          "Learn-rate coefficient for bias (used as: coef * bias_coef).");
  
      po.Read(argc, argv);
  
      if (po.NumArgs() != 2) {
        po.PrintUsage();
        exit(1);
      }
  
      std::string nnet_in_filename = po.GetArg(1),
        nnet_out_filename = po.GetArg(2);
  
      Nnet nnet;
      nnet.Read(nnet_in_filename);
  
      // A vector which contains indices of components,
      // where we will set the 'learn-rate coefficients',
      std::vector<int32> components;
      if (components_str != "") {
        // components were selected by the option,
        kaldi::SplitStringToIntegers(components_str, ":", false, &components);
      } else {
        // otherwise select all the components (1..Ncomp),
        for (int32 i = 1; i <= nnet.NumComponents(); i++) {
          components.push_back(i);
        }
      }
  
      // Setting the learning rate coefficients,
      for (int32 i = 0; i < components.size(); i++) {
        if (nnet.GetComponent(components[i]-1).IsUpdatable()) {
          UpdatableComponent& comp =
            dynamic_cast<UpdatableComponent&>(nnet.GetComponent(components[i]-1));
          comp.SetLearnRateCoef(coef * weight_coef);  // weight matrices, etc.,
          comp.SetBiasLearnRateCoef(coef * bias_coef);  // biases,
        }
      }
  
      // Write the 'nnet1' network,
      nnet.Write(nnet_out_filename, binary);
  
      return 0;
    } catch(const std::exception &e) {
      std::cerr << e.what();
      return -1;
    }
  }