Blame view
src/sgmm2/estimate-am-sgmm2-ebw.cc
29.2 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 |
// sgmm2/estimate-am-sgmm2-ebw.cc // Copyright 2012 Johns Hopkins University (Author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "sgmm2/estimate-am-sgmm2-ebw.h" #include "util/kaldi-thread.h" using std::vector; namespace kaldi { void EbwAmSgmm2Updater::Update(const MleAmSgmm2Accs &num_accs, const MleAmSgmm2Accs &den_accs, AmSgmm2 *model, SgmmUpdateFlagsType flags, BaseFloat *auxf_change_out, BaseFloat *count_out) { // Various quantities need to be computed at the start, before we // change any of the model parameters. std::vector< SpMatrix<double> > Q_num, Q_den, H, S_means; if (flags & kSgmmPhoneProjections) { MleAmSgmm2Updater::ComputeQ(num_accs, *model, &Q_num); MleAmSgmm2Updater::ComputeQ(den_accs, *model, &Q_den); } if (flags & kSgmmCovarianceMatrix) { // compute the difference between // the num and den S_means matrices... this is what we will need. MleAmSgmm2Updater::ComputeSMeans(num_accs, *model, &S_means); std::vector< SpMatrix<double> > S_means_tmp; MleAmSgmm2Updater::ComputeSMeans(den_accs, *model, &S_means_tmp); for (size_t i = 0; i < S_means.size(); i++) S_means[i].AddSp(-1.0, S_means_tmp[i]); } if (flags & (kSgmmPhoneVectors | kSgmmPhoneWeightProjections)) model->ComputeH(&H); Vector<double> gamma_num(num_accs.num_gaussians_); for (int32 j1 = 0; j1 < num_accs.num_groups_; j1++) gamma_num.AddRowSumMat(1.0, num_accs.gamma_[j1]); Vector<double> gamma_den(den_accs.num_gaussians_); for (int32 j1 = 0; j1 < den_accs.num_groups_; j1++) gamma_den.AddRowSumMat(1.0, den_accs.gamma_[j1]); BaseFloat tot_impr = 0.0; if (flags & kSgmmPhoneVectors) tot_impr += UpdatePhoneVectors(num_accs, den_accs, H, model); if (flags & kSgmmPhoneProjections) tot_impr += UpdateM(num_accs, den_accs, Q_num, Q_den, gamma_num, gamma_den, model); if (flags & kSgmmPhoneWeightProjections) tot_impr += UpdateW(num_accs, den_accs, gamma_num, gamma_den, model); if (flags & kSgmmSpeakerWeightProjections) tot_impr += UpdateU(num_accs, den_accs, gamma_num, gamma_den, model); if (flags & kSgmmCovarianceMatrix) tot_impr += UpdateVars(num_accs, den_accs, gamma_num, gamma_den, S_means, model); if (flags & kSgmmSubstateWeights) tot_impr += UpdateSubstateWeights(num_accs, den_accs, model); if (flags & kSgmmSpeakerProjections) tot_impr += UpdateN(num_accs, den_accs, gamma_num, gamma_den, model); if (auxf_change_out) *auxf_change_out = tot_impr * num_accs.total_frames_; if (count_out) *count_out = num_accs.total_frames_; if (fabs(num_accs.total_frames_ - den_accs.total_frames_) > 0.01*(num_accs.total_frames_ + den_accs.total_frames_)) KALDI_WARN << "Num and den frame counts differ, " << num_accs.total_frames_ << " vs. " << den_accs.total_frames_; BaseFloat like_diff = num_accs.total_like_ - den_accs.total_like_; KALDI_LOG << "***Averaged differenced likelihood per frame is " << (like_diff/num_accs.total_frames_) << " over " << (num_accs.total_frames_) << " frames."; KALDI_LOG << "***Note: for this to be at all meaningful, if you use " << "\"canceled\" stats you will have to renormalize this over " << "the \"real\" frame count."; KALDI_ASSERT(num_accs.total_frames_ > 0 && den_accs.total_frames_ > 0); model->ComputeNormalizers(); } class EbwUpdatePhoneVectorsClass: public MultiThreadable { // For multi-threaded. public: EbwUpdatePhoneVectorsClass(const EbwAmSgmm2Updater *updater, const MleAmSgmm2Accs &num_accs, const MleAmSgmm2Accs &den_accs, const std::vector<SpMatrix<double> > &H, AmSgmm2 *model, double *auxf_impr): updater_(updater), num_accs_(num_accs), den_accs_(den_accs), model_(model), H_(H), auxf_impr_ptr_(auxf_impr), auxf_impr_(0.0) { } EbwUpdatePhoneVectorsClass(const EbwUpdatePhoneVectorsClass &other) : MultiThreadable(other), updater_(other.updater_), num_accs_(other.num_accs_), den_accs_(other.den_accs_), model_(other.model_), H_(other.H_), auxf_impr_ptr_(other.auxf_impr_ptr_), auxf_impr_(0.0) { } ~EbwUpdatePhoneVectorsClass() { *auxf_impr_ptr_ += auxf_impr_; } inline void operator() () { // Note: give them local copy of the sums we're computing, // which will be propagated to the total sums in the destructor. updater_->UpdatePhoneVectorsInternal(num_accs_, den_accs_, H_, model_, &auxf_impr_, num_threads_, thread_id_); } private: const EbwAmSgmm2Updater *updater_; const MleAmSgmm2Accs &num_accs_; const MleAmSgmm2Accs &den_accs_; AmSgmm2 *model_; const std::vector<SpMatrix<double> > &H_; double *auxf_impr_ptr_; double auxf_impr_; }; void EbwAmSgmm2Updater::ComputePhoneVecStats( const MleAmSgmm2Accs &accs, const AmSgmm2 &model, const std::vector<SpMatrix<double> > &H, int32 j1, int32 m, const Vector<double> &w_jm_in, double gamma_jm, Vector<double> *g_jm, SpMatrix<double> *H_jm) { Vector<double> w_jm(w_jm_in); if (!accs.a_.empty() && accs.a_[j1](m, 0) != 0) { // [SSGMM] w_jm.MulElements(accs.a_[j1].Row(m)); // multiply by "a" quantities.. w_jm.Scale(1.0 / w_jm.Sum()); // renormalize. } g_jm->CopyFromVec(accs.y_[j1].Row(m)); for (int32 i = 0; i < accs.num_gaussians_; i++) { double gamma_jmi = accs.gamma_[j1](m, i); double quadratic_term = std::max(gamma_jmi, gamma_jm * w_jm(i)); double scalar = gamma_jmi - gamma_jm * w_jm(i) + quadratic_term * VecVec(model.w_.Row(i), model.v_[j1].Row(m)); g_jm->AddVec(scalar, model.w_.Row(i)); if (gamma_jmi != 0.0) H_jm->AddSp(gamma_jmi, H[i]); // The most important term.. if (quadratic_term > 1.0e-10) H_jm->AddVec2(static_cast<BaseFloat>(quadratic_term), model.w_.Row(i)); } } // Runs the phone vectors update for a subset of states (called // multi-threaded). void EbwAmSgmm2Updater::UpdatePhoneVectorsInternal( const MleAmSgmm2Accs &num_accs, const MleAmSgmm2Accs &den_accs, const std::vector<SpMatrix<double> > &H, AmSgmm2 *model, double *auxf_impr, int32 num_threads, int32 thread_id) const { int32 block_size = (num_accs.num_groups_ + (num_threads-1)) / num_threads, j1_start = block_size * thread_id, j1_end = std::min(num_accs.num_groups_, j1_start + block_size); int32 S = num_accs.phn_space_dim_, I = num_accs.num_gaussians_; for (int32 j1 = j1_start; j1 < j1_end; j1++) { double num_state_count = 0.0, state_auxf_impr = 0.0; Vector<double> w_jm(I); for (int32 m = 0; m < model->NumSubstatesForGroup(j1); m++) { double gamma_jm_num = num_accs.gamma_[j1].Row(m).Sum(); double gamma_jm_den = den_accs.gamma_[j1].Row(m).Sum(); num_state_count += gamma_jm_num; Vector<double> g_jm_num(S); // computed using eq. 58 of SGMM paper [for numerator stats] SpMatrix<double> H_jm_num(S); // computed using eq. 59 of SGMM paper [for numerator stats] Vector<double> g_jm_den(S); // same, but for denominator stats. SpMatrix<double> H_jm_den(S); // Compute the weights for this sub-state. // w_jm = softmax([w_{k1}^T ... w_{kD}^T] * v_{jkm}) eq.(7) w_jm.AddMatVec(1.0, Matrix<double>(model->w_), kNoTrans, Vector<double>(model->v_[j1].Row(m)), 0.0); w_jm.ApplySoftMax(); // Note: in the ML code, in the SSGMM case, at this point the w_jm would // be modified with the "a" quantities to get the "\tilde{w}_{jm}" of the // SSGMM techreport. But in this code, it gets done inside ComputePhoneVecStats. ComputePhoneVecStats(num_accs, *model, H, j1, m, w_jm, gamma_jm_num, &g_jm_num, &H_jm_num); ComputePhoneVecStats(den_accs, *model, H, j1, m, w_jm, gamma_jm_den, &g_jm_den, &H_jm_den); Vector<double> v_jm(model->v_[j1].Row(m)); Vector<double> local_derivative(S); // difference of derivative of numerator // and denominator objetive function. local_derivative.AddVec(1.0, g_jm_num); local_derivative.AddSpVec(-1.0, H_jm_num, v_jm, 1.0); local_derivative.AddVec(-1.0, g_jm_den); local_derivative.AddSpVec(-1.0 * -1.0, H_jm_den, v_jm, 1.0); SpMatrix<double> quadratic_term(H_jm_num); quadratic_term.AddSp(1.0, H_jm_den); double substate_count = 1.0e-10 + gamma_jm_num + gamma_jm_den; quadratic_term.Scale( (substate_count + options_.tau_v) / substate_count); quadratic_term.Scale(1.0 / (options_.lrate_v + 1.0e-10) ); Vector<double> delta_v_jm(S); SolverOptions opts; opts.name = "v"; opts.K = options_.max_cond; opts.eps = options_.epsilon; double auxf_impr = ((gamma_jm_num + gamma_jm_den == 0) ? 0.0 : SolveQuadraticProblem(quadratic_term, local_derivative, opts, &delta_v_jm)); v_jm.AddVec(1.0, delta_v_jm); model->v_[j1].Row(m).CopyFromVec(v_jm); state_auxf_impr += auxf_impr; } *auxf_impr += state_auxf_impr; if (j1 < 10 && thread_id == 0) { KALDI_LOG << "Objf impr for group j = " << j1 << " is " << (state_auxf_impr / (num_state_count + 1.0e-10)) << " over " << num_state_count << " frames"; } } } double EbwAmSgmm2Updater::UpdatePhoneVectors(const MleAmSgmm2Accs &num_accs, const MleAmSgmm2Accs &den_accs, const vector< SpMatrix<double> > &H, AmSgmm2 *model) const { KALDI_LOG << "Updating phone vectors."; double count = 0.0, auxf_impr = 0.0; int32 J1 = num_accs.num_groups_; for (int32 j1 = 0; j1 < J1; j1++) count += num_accs.gamma_[j1].Sum(); EbwUpdatePhoneVectorsClass c(this, num_accs, den_accs, H, model, &auxf_impr); RunMultiThreaded(c); auxf_impr /= count; KALDI_LOG << "**Overall auxf improvement for v is " << auxf_impr << " over " << count << " frames"; return auxf_impr; } double EbwAmSgmm2Updater::UpdateM(const MleAmSgmm2Accs &num_accs, const MleAmSgmm2Accs &den_accs, const std::vector< SpMatrix<double> > &Q_num, const std::vector< SpMatrix<double> > &Q_den, const Vector<double> &gamma_num, const Vector<double> &gamma_den, AmSgmm2 *model) const { int32 S = model->PhoneSpaceDim(), D = model->FeatureDim(), I = model->NumGauss(); Vector<double> impr_vec(I); for (int32 i = 0; i < I; i++) { double gamma_i_num = gamma_num(i), gamma_i_den = gamma_den(i); if (gamma_i_num + gamma_i_den == 0.0) { KALDI_WARN << "Not updating phonetic basis for i = " << i << " because count is zero. "; continue; } Matrix<double> Mi(model->M_[i]); Matrix<double> L(D, S); // this is something like the Y quantity, which // represents the linear term in the objf on M-- except that we make it the local // derivative about the current value, instead of the derivative around zero. // But it's not exactly the derivative w.r.t. M, due to the factor of Sigma_i. // The auxiliary function is Q(x) = tr(M^T P Y) - 0.5 tr(P M Q M^T), // where P is Y^{-1}. The quantity L we define here will be Y - M Q, // and you can think of this as like the local derivative, except there is // a term P in there. L.AddMat(1.0, num_accs.Y_[i]); L.AddMatSp(-1.0, Mi, kNoTrans, Q_num[i], 1.0); L.AddMat(-1.0, den_accs.Y_[i]); L.AddMatSp(-1.0*-1.0, Mi, kNoTrans, Q_den[i], 1.0); SpMatrix<double> Q(S); // This is a combination of the Q's for the numerator and denominator. Q.AddSp(1.0, Q_num[i]); Q.AddSp(1.0, Q_den[i]); double state_count = 1.0e-10 + gamma_i_num + gamma_i_den; // the count // represented by the quadratic part of the stats. Q.Scale( (state_count + options_.tau_M) / state_count ); Q.Scale( 1.0 / (options_.lrate_M + 1.0e-10) ); SolverOptions opts; opts.name = "M"; opts.K = options_.max_cond; opts.eps = options_.epsilon; Matrix<double> deltaM(D, S); double impr = SolveQuadraticMatrixProblem(Q, L, SpMatrix<double>(model->SigmaInv_[i]), opts, &deltaM); impr_vec(i) = impr; Mi.AddMat(1.0, deltaM); model->M_[i].CopyFromMat(Mi); if (i < 10 || impr / state_count > 3.0) { KALDI_VLOG(2) << "Objf impr for projection M for i = " << i << ", is " << (impr/(gamma_i_num + 1.0e-20)) << " over " << gamma_i_num << " frames"; } } BaseFloat tot_count = gamma_num.Sum(), tot_impr = impr_vec.Sum(); tot_impr /= (tot_count + 1.0e-20); KALDI_LOG << "Overall auxiliary function improvement for model projections " << "M is " << tot_impr << " over " << tot_count << " frames"; KALDI_VLOG(1) << "Updating M: num-count is " << gamma_num; KALDI_VLOG(1) << "Updating M: den-count is " << gamma_den; KALDI_VLOG(1) << "Updating M: objf-impr is " << impr_vec; return tot_impr; } // Note: we do just one iteration of the weight-projection update here. The // weak-sense auxiliary functions used don't really make sense if we do it for // multiple iterations. It would be possible to use a similar auxiliary // function to the one on my (D. Povey)'s thesis for the Gaussian mixture // weights, which would make sense for multiple iterations, but this would be a // bit more complex to implement and probably would not give much improvement // over this approach. double EbwAmSgmm2Updater::UpdateW(const MleAmSgmm2Accs &num_accs, const MleAmSgmm2Accs &den_accs, const Vector<double> &gamma_num, const Vector<double> &gamma_den, AmSgmm2 *model) { KALDI_LOG << "Updating weight projections"; int32 I = num_accs.num_gaussians_, S = num_accs.phn_space_dim_; Matrix<double> g_i_num(I, S), g_i_den(I, S); // View F_i_{num,den} as vectors of SpMatrix [i.e. symmetric matrices, // linearized into vectors] Matrix<double> F_i_num(I, (S*(S+1))/2), F_i_den(I, (S*(S+1))/2); Vector<double> impr_vec(I); // Get the F_i and g_i quantities-- this is done in parallel (multi-core), // using the same code we use in the ML update [except we get it for // numerator and denominator separately.] Matrix<double> w(model->w_); { std::vector<Matrix<double> > log_a_num; if (model->HasSpeakerDependentWeights()) MleAmSgmm2Updater::ComputeLogA(num_accs, &log_a_num); double garbage; UpdateWClass c_num(num_accs, *model, w, log_a_num, &F_i_num, &g_i_num, &garbage); RunMultiThreaded(c_num); } { std::vector<Matrix<double> > log_a_den; if (model->HasSpeakerDependentWeights()) MleAmSgmm2Updater::ComputeLogA(den_accs, &log_a_den); double garbage; UpdateWClass c_den(den_accs, *model, w, log_a_den, &F_i_den, &g_i_den, &garbage); RunMultiThreaded(c_den); } for (int32 i = 0; i < I; i++) { // auxf was originally formulated in terms of the change in w (i.e. the // g quantities are the local derivatives), so there is less hassle than // with some of the other updates, in changing it to be discriminative. // we essentially just difference the linear terms and add the quadratic // terms. Vector<double> derivative(g_i_num.Row(i)); derivative.AddVec(-1.0, g_i_den.Row(i)); // F_i_num quadratic_term is a bit like the negated 2nd derivative // of the numerator stats-- actually it's not the actual 2nd deriv, // but an upper bound on it. SpMatrix<double> quadratic_term(S), tmp_F(S); quadratic_term.CopyFromVec(F_i_num.Row(i)); tmp_F.CopyFromVec(F_i_den.Row(i)); // tmp_F is used for Vector->SpMatrix conversion. quadratic_term.AddSp(1.0, tmp_F); double state_count = gamma_num(i) + gamma_den(i); quadratic_term.Scale((state_count + options_.tau_w) / (state_count + 1.0e-10)); quadratic_term.Scale(1.0 / (options_.lrate_w + 1.0e-10) ); Vector<double> delta_w(S); SolverOptions opts; opts.name = "w"; opts.K = options_.max_cond; opts.eps = options_.epsilon; double objf_impr = SolveQuadraticProblem(quadratic_term, derivative, opts, &delta_w); impr_vec(i) = objf_impr; if (i < 10 || objf_impr / (gamma_num(i) + 1.0e-10) > 2.0) { KALDI_LOG << "Predicted objf impr for w per frame is " << (objf_impr / (gamma_num(i) + 1.0e-10)) << " over " << gamma_num(i) << " frames."; } model->w_.Row(i).AddVec(1.0, delta_w); } KALDI_VLOG(1) << "Updating w: numerator count is " << gamma_num; KALDI_VLOG(1) << "Updating w: denominator count is " << gamma_den; KALDI_VLOG(1) << "Updating w: objf-impr is " << impr_vec; double tot_num_count = gamma_num.Sum(), tot_impr = impr_vec.Sum(); tot_impr /= tot_num_count; KALDI_LOG << "**Overall objf impr for w per frame is " << tot_impr << " over " << tot_num_count << " frames."; return tot_impr; } double EbwAmSgmm2Updater::UpdateU(const MleAmSgmm2Accs &num_accs, const MleAmSgmm2Accs &den_accs, const Vector<double> &gamma_num, const Vector<double> &gamma_den, AmSgmm2 *model) { int32 T = num_accs.spk_space_dim_; double tot_impr = 0.0; for (int32 i = 0; i < num_accs.num_gaussians_; i++) { if (gamma_num(i) < 200.0) { KALDI_LOG << "Numerator count is small " << gamma_num(i) << " for gaussian " << i << ", not updating u_i."; continue; } Vector<double> u_i(model->u_.Row(i)); Vector<double> delta_u(T); Vector<double> t(T); // derivative. t.AddVec(1.0, num_accs.t_.Row(i)); t.AddVec(-1.0, den_accs.t_.Row(i)); SpMatrix<double> U(T); // quadratic term. U.AddSp(1.0, num_accs.U_[i]); U.AddSp(1.0, den_accs.U_[i]); double state_count = gamma_num(i) + gamma_den(i); U.Scale((state_count + options_.tau_u) / (state_count + 1.0e-10)); U.Scale(1.0 / (options_.lrate_u + 1.0e-10) ); SolverOptions opts; opts.name = "u"; opts.K = options_.max_cond; opts.eps = options_.epsilon; double impr = SolveQuadraticProblem(U, t, opts, &delta_u); double impr_per_frame = impr / gamma_num(i); if (impr_per_frame > options_.max_impr_u) { KALDI_WARN << "Updating speaker weight projections u, for Gaussian index " << i << ", impr/frame is " << impr_per_frame << " over " << gamma_num(i) << " frames, scaling back to not exceed " << options_.max_impr_u; double scale = options_.max_impr_u / impr_per_frame; impr *= scale; delta_u.Scale(scale); // Note: a linear scaling of "impr" with "scale" is not quite accurate // in depicting how the quadratic auxiliary function varies as we change // the scale on "delta", but this does not really matter-- the goal is // to limit the auxiliary-function change to not be too large. } if (i < 10) { KALDI_LOG << "Objf impr for spk weight-projection u for i = " << (i) << ", is " << (impr / (gamma_num(i) + 1.0e-20)) << " over " << gamma_num(i) << " frames"; } u_i.AddVec(1.0, delta_u); model->u_.Row(i).CopyFromVec(u_i); tot_impr += impr; } KALDI_LOG << "**Overall objf impr for u is " << (tot_impr/gamma_num.Sum()) << ", over " << gamma_num.Sum() << " frames"; return tot_impr; } double EbwAmSgmm2Updater::UpdateN(const MleAmSgmm2Accs &num_accs, const MleAmSgmm2Accs &den_accs, const Vector<double> &gamma_num, const Vector<double> &gamma_den, AmSgmm2 *model) const { if (num_accs.spk_space_dim_ == 0 || num_accs.R_.size() == 0 || num_accs.Z_.size() == 0) { KALDI_ERR << "Speaker subspace dim is zero or no stats accumulated"; } int32 I = num_accs.num_gaussians_, D = num_accs.feature_dim_, T = num_accs.spk_space_dim_; Vector<double> impr_vec(I); for (int32 i = 0; i < I; i++) { double gamma_i_num = gamma_num(i), gamma_i_den = gamma_den(i); if (gamma_i_num + gamma_i_den == 0.0) { KALDI_WARN << "Not updating speaker basis for i = " << i << " because count is zero. "; continue; } Matrix<double> Ni(model->N_[i]); // See comment near declaration of L in UpdateM(). This update is the // same, but change M->N, Y->Z and Q->R. Matrix<double> L(D, T); L.AddMat(1.0, num_accs.Z_[i]); L.AddMatSp(-1.0, Ni, kNoTrans, num_accs.R_[i], 1.0); L.AddMat(-1.0, den_accs.Z_[i]); L.AddMatSp(-1.0*-1.0, Ni, kNoTrans, den_accs.R_[i], 1.0); SpMatrix<double> R(T); // combination of the numerator and denominator R's. R.AddSp(1.0, num_accs.R_[i]); R.AddSp(1.0, den_accs.R_[i]); double state_count = 1.0e-10 + gamma_i_num + gamma_i_den; // the count // represented by the quadratic part of the stats. R.Scale( (state_count + options_.tau_N) / state_count ); R.Scale( 1.0 / (options_.lrate_N + 1.0e-10) ); Matrix<double> deltaN(D, T); SolverOptions opts; opts.name = "N"; opts.K = options_.max_cond; opts.eps = options_.epsilon; double impr = SolveQuadraticMatrixProblem(R, L, SpMatrix<double>(model->SigmaInv_[i]), opts, &deltaN); impr_vec(i) = impr; Ni.AddMat(1.0, deltaN); model->N_[i].CopyFromMat(Ni); if (i < 10 || impr / (state_count+1.0e-20) > 3.0) { KALDI_LOG << "Objf impr for spk projection N for i = " << (i) << ", is " << (impr / (gamma_i_num + 1.0e-20)) << " over " << gamma_i_num << " frames"; } } KALDI_VLOG(1) << "Updating N: numerator count is " << gamma_num; KALDI_VLOG(1) << "Updating N: denominator count is " << gamma_den; KALDI_VLOG(1) << "Updating N: objf-impr is " << impr_vec; double tot_count = gamma_num.Sum(), tot_impr = impr_vec.Sum(); tot_impr /= (tot_count + 1.0e-20); KALDI_LOG << "**Overall auxf impr for N is " << tot_impr << " over " << tot_count << " frames"; return tot_impr; } double EbwAmSgmm2Updater::UpdateVars(const MleAmSgmm2Accs &num_accs, const MleAmSgmm2Accs &den_accs, const Vector<double> &gamma_num, const Vector<double> &gamma_den, const std::vector< SpMatrix<double> > &S_means, AmSgmm2 *model) const { // Note: S_means contains not only the quantity S_means in the paper, // but also has a term - (Y_i M_i^T + M_i Y_i^T). Plus, it is differenced // between numerator and denominator. We don't calculate it here, // because it had to be computed with the original model, before we // changed the M quantities. int32 I = num_accs.num_gaussians_; KALDI_ASSERT(S_means.size() == I); Vector<double> impr_vec(I); for (int32 i = 0; i < I; i++) { double num_count = gamma_num(i), den_count = gamma_den(i); SpMatrix<double> SigmaStats(S_means[i]); SigmaStats.AddSp(1.0, num_accs.S_[i]); SigmaStats.AddSp(-1.0, den_accs.S_[i]); // SigmaStats now contain the stats for estimating Sigma (as in the main SGMM paper), // differenced between num and den. SpMatrix<double> SigmaInvOld(model->SigmaInv_[i]), SigmaOld(model->SigmaInv_[i]); SigmaOld.Invert(); double count = num_count - den_count; KALDI_ASSERT(options_.lrate_Sigma <= 1.0); double inv_lrate = 1.0 / options_.lrate_Sigma; // These formulas assure that the objective function behaves in // a roughly symmetric way w.r.t. num and den counts. double E_den = 1.0 + inv_lrate, E_num = inv_lrate - 1.0; double smoothing_count = (options_.tau_Sigma * inv_lrate) + // multiply tau_Sigma by inverse-lrate (E_den * den_count) + // for compatibility with other updates. (E_num * num_count) + 1.0e-10; SigmaStats.AddSp(smoothing_count, SigmaOld); count += smoothing_count; SigmaStats.Scale(1.0 / count); SpMatrix<double> SigmaInv(SigmaStats); // before floor and ceiling. Currently sigma, // not its inverse. bool verbose = false; int n_floor = SigmaInv.ApplyFloor(SigmaOld, options_.cov_min_value, verbose); SigmaInv.Invert(); // make it inverse variance. int n_ceiling = SigmaInv.ApplyFloor(SigmaInvOld, options_.cov_min_value, verbose); // this auxf_change. double auxf_change = -0.5 * count *(TraceSpSp(SigmaInv, SigmaStats) - TraceSpSp(SigmaInvOld, SigmaStats) - SigmaInv.LogDet() + SigmaInvOld.LogDet()); model->SigmaInv_[i].CopyFromSp(SigmaInv); impr_vec(i) = auxf_change; if (i < 10 || auxf_change / (num_count+den_count+1.0e-10) > 2.0 || n_floor+n_ceiling > 0) { KALDI_LOG << "Updating variance: Auxf change per frame for Gaussian " << i << " is " << (auxf_change / num_count) << " over " << num_count << " frames " << "(den count was " << den_count << "), #floor,ceil was " << n_floor << ", " << n_ceiling; } } KALDI_VLOG(1) << "Updating Sigma: numerator count is " << gamma_num; KALDI_VLOG(1) << "Updating Sigma: denominator count is " << gamma_den; KALDI_VLOG(1) << "Updating Sigma: objf-impr is " << impr_vec; double tot_count = gamma_num.Sum(), tot_impr = impr_vec.Sum(); tot_impr /= tot_count+1.0e-20; KALDI_LOG << "**Overall auxf impr for Sigma is " << tot_impr << " over " << tot_count << " frames"; return tot_impr; } double EbwAmSgmm2Updater::UpdateSubstateWeights( const MleAmSgmm2Accs &num_accs, const MleAmSgmm2Accs &den_accs, AmSgmm2 *model) { KALDI_LOG << "Updating substate mixture weights"; double tot_count = 0.0, tot_impr = 0.0; for (int32 j2 = 0; j2 < num_accs.num_pdfs_; j2++) { int32 M = model->NumSubstatesForPdf(j2); Vector<double> num_occs(M), den_occs(M), orig_weights(model->c_[j2]), weights(model->c_[j2]); for (int32 m = 0; m < M; m++) { num_occs(m) = num_accs.gamma_c_[j2](m) + options_.tau_c * weights(m); den_occs(m) = den_accs.gamma_c_[j2](m); } if (weights.Dim() > 1) { double begin_auxf = 0.0, end_auxf = 0.0; for (int32 m = 0; m < M; m++) { // see eq. 4.32, Dan Povey's PhD thesis. begin_auxf += num_occs(m) * log (weights(m)) - den_occs(m) * weights(m) / orig_weights(m); } for (int32 iter = 0; iter < 50; iter++) { Vector<double> k_jm(M); double max_m = 0.0; for (int32 m = 0; m < M; m++) max_m = std::max(max_m, den_occs(m)/orig_weights(m)); for (int32 m = 0; m < M; m++) k_jm(m) = max_m - den_occs(m)/orig_weights(m); for (int32 m = 0; m < M; m++) weights(m) = num_occs(m) + k_jm(m)*weights(m); weights.Scale(1.0 / weights.Sum()); } for (int32 m = 0; m < M; m++) weights(m) = std::max(weights(m), static_cast<double>(options_.min_substate_weight)); weights.Scale(1.0 / weights.Sum()); // renormalize. for (int32 m = 0; m < M; m++) { end_auxf += num_occs(m) * log (weights(m)) - den_occs(m) * weights(m) / orig_weights(m); } tot_impr += end_auxf - begin_auxf; double this_impr = ((end_auxf - begin_auxf) / num_occs.Sum()); if (j2 < 10 || this_impr > 0.5) { KALDI_LOG << "Updating substate weights: auxf impr for pdf " << j2 << " is " << this_impr << " per frame over " << num_occs.Sum() << " frames (den count is " << den_occs.Sum() << ")"; } } model->c_[j2].CopyFromVec(weights); tot_count += den_occs.Sum(); // Note: num and den occs should be the // same, except num occs are smoothed, so this is what we want. } tot_impr /= (tot_count + 1.0e-20); KALDI_LOG << "**Overall auxf impr for c is " << tot_impr << " over " << tot_count << " frames"; return tot_impr; } } // namespace kaldi |