estimate-am-sgmm2-ebw.cc
29.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
// sgmm2/estimate-am-sgmm2-ebw.cc
// Copyright 2012 Johns Hopkins University (Author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#include "base/kaldi-common.h"
#include "sgmm2/estimate-am-sgmm2-ebw.h"
#include "util/kaldi-thread.h"
using std::vector;
namespace kaldi {
void EbwAmSgmm2Updater::Update(const MleAmSgmm2Accs &num_accs,
const MleAmSgmm2Accs &den_accs,
AmSgmm2 *model,
SgmmUpdateFlagsType flags,
BaseFloat *auxf_change_out,
BaseFloat *count_out) {
// Various quantities need to be computed at the start, before we
// change any of the model parameters.
std::vector< SpMatrix<double> > Q_num, Q_den, H, S_means;
if (flags & kSgmmPhoneProjections) {
MleAmSgmm2Updater::ComputeQ(num_accs, *model, &Q_num);
MleAmSgmm2Updater::ComputeQ(den_accs, *model, &Q_den);
}
if (flags & kSgmmCovarianceMatrix) { // compute the difference between
// the num and den S_means matrices... this is what we will need.
MleAmSgmm2Updater::ComputeSMeans(num_accs, *model, &S_means);
std::vector< SpMatrix<double> > S_means_tmp;
MleAmSgmm2Updater::ComputeSMeans(den_accs, *model, &S_means_tmp);
for (size_t i = 0; i < S_means.size(); i++)
S_means[i].AddSp(-1.0, S_means_tmp[i]);
}
if (flags & (kSgmmPhoneVectors | kSgmmPhoneWeightProjections))
model->ComputeH(&H);
Vector<double> gamma_num(num_accs.num_gaussians_);
for (int32 j1 = 0; j1 < num_accs.num_groups_; j1++)
gamma_num.AddRowSumMat(1.0, num_accs.gamma_[j1]);
Vector<double> gamma_den(den_accs.num_gaussians_);
for (int32 j1 = 0; j1 < den_accs.num_groups_; j1++)
gamma_den.AddRowSumMat(1.0, den_accs.gamma_[j1]);
BaseFloat tot_impr = 0.0;
if (flags & kSgmmPhoneVectors)
tot_impr += UpdatePhoneVectors(num_accs, den_accs, H, model);
if (flags & kSgmmPhoneProjections)
tot_impr += UpdateM(num_accs, den_accs, Q_num, Q_den,
gamma_num, gamma_den, model);
if (flags & kSgmmPhoneWeightProjections)
tot_impr += UpdateW(num_accs, den_accs, gamma_num, gamma_den, model);
if (flags & kSgmmSpeakerWeightProjections)
tot_impr += UpdateU(num_accs, den_accs, gamma_num, gamma_den, model);
if (flags & kSgmmCovarianceMatrix)
tot_impr += UpdateVars(num_accs, den_accs,
gamma_num, gamma_den, S_means, model);
if (flags & kSgmmSubstateWeights)
tot_impr += UpdateSubstateWeights(num_accs, den_accs, model);
if (flags & kSgmmSpeakerProjections)
tot_impr += UpdateN(num_accs, den_accs, gamma_num, gamma_den, model);
if (auxf_change_out) *auxf_change_out = tot_impr * num_accs.total_frames_;
if (count_out) *count_out = num_accs.total_frames_;
if (fabs(num_accs.total_frames_ - den_accs.total_frames_) >
0.01*(num_accs.total_frames_ + den_accs.total_frames_))
KALDI_WARN << "Num and den frame counts differ, "
<< num_accs.total_frames_ << " vs. " << den_accs.total_frames_;
BaseFloat like_diff = num_accs.total_like_ - den_accs.total_like_;
KALDI_LOG << "***Averaged differenced likelihood per frame is "
<< (like_diff/num_accs.total_frames_)
<< " over " << (num_accs.total_frames_) << " frames.";
KALDI_LOG << "***Note: for this to be at all meaningful, if you use "
<< "\"canceled\" stats you will have to renormalize this over "
<< "the \"real\" frame count.";
KALDI_ASSERT(num_accs.total_frames_ > 0 && den_accs.total_frames_ > 0);
model->ComputeNormalizers();
}
class EbwUpdatePhoneVectorsClass: public MultiThreadable { // For multi-threaded.
public:
EbwUpdatePhoneVectorsClass(const EbwAmSgmm2Updater *updater,
const MleAmSgmm2Accs &num_accs,
const MleAmSgmm2Accs &den_accs,
const std::vector<SpMatrix<double> > &H,
AmSgmm2 *model,
double *auxf_impr):
updater_(updater), num_accs_(num_accs), den_accs_(den_accs),
model_(model), H_(H), auxf_impr_ptr_(auxf_impr), auxf_impr_(0.0) { }
EbwUpdatePhoneVectorsClass(const EbwUpdatePhoneVectorsClass &other) :
MultiThreadable(other),
updater_(other.updater_), num_accs_(other.num_accs_),
den_accs_(other.den_accs_), model_(other.model_),
H_(other.H_), auxf_impr_ptr_(other.auxf_impr_ptr_), auxf_impr_(0.0) { }
~EbwUpdatePhoneVectorsClass() {
*auxf_impr_ptr_ += auxf_impr_;
}
inline void operator() () {
// Note: give them local copy of the sums we're computing,
// which will be propagated to the total sums in the destructor.
updater_->UpdatePhoneVectorsInternal(num_accs_, den_accs_, H_, model_,
&auxf_impr_, num_threads_, thread_id_);
}
private:
const EbwAmSgmm2Updater *updater_;
const MleAmSgmm2Accs &num_accs_;
const MleAmSgmm2Accs &den_accs_;
AmSgmm2 *model_;
const std::vector<SpMatrix<double> > &H_;
double *auxf_impr_ptr_;
double auxf_impr_;
};
void EbwAmSgmm2Updater::ComputePhoneVecStats(
const MleAmSgmm2Accs &accs,
const AmSgmm2 &model,
const std::vector<SpMatrix<double> > &H,
int32 j1,
int32 m,
const Vector<double> &w_jm_in,
double gamma_jm,
Vector<double> *g_jm,
SpMatrix<double> *H_jm) {
Vector<double> w_jm(w_jm_in);
if (!accs.a_.empty() && accs.a_[j1](m, 0) != 0) { // [SSGMM]
w_jm.MulElements(accs.a_[j1].Row(m)); // multiply by "a" quantities..
w_jm.Scale(1.0 / w_jm.Sum()); // renormalize.
}
g_jm->CopyFromVec(accs.y_[j1].Row(m));
for (int32 i = 0; i < accs.num_gaussians_; i++) {
double gamma_jmi = accs.gamma_[j1](m, i);
double quadratic_term = std::max(gamma_jmi, gamma_jm * w_jm(i));
double scalar = gamma_jmi - gamma_jm * w_jm(i) + quadratic_term
* VecVec(model.w_.Row(i), model.v_[j1].Row(m));
g_jm->AddVec(scalar, model.w_.Row(i));
if (gamma_jmi != 0.0)
H_jm->AddSp(gamma_jmi, H[i]); // The most important term..
if (quadratic_term > 1.0e-10)
H_jm->AddVec2(static_cast<BaseFloat>(quadratic_term), model.w_.Row(i));
}
}
// Runs the phone vectors update for a subset of states (called
// multi-threaded).
void EbwAmSgmm2Updater::UpdatePhoneVectorsInternal(
const MleAmSgmm2Accs &num_accs,
const MleAmSgmm2Accs &den_accs,
const std::vector<SpMatrix<double> > &H,
AmSgmm2 *model,
double *auxf_impr,
int32 num_threads,
int32 thread_id) const {
int32 block_size = (num_accs.num_groups_ + (num_threads-1)) / num_threads,
j1_start = block_size * thread_id,
j1_end = std::min(num_accs.num_groups_, j1_start + block_size);
int32 S = num_accs.phn_space_dim_, I = num_accs.num_gaussians_;
for (int32 j1 = j1_start; j1 < j1_end; j1++) {
double num_state_count = 0.0,
state_auxf_impr = 0.0;
Vector<double> w_jm(I);
for (int32 m = 0; m < model->NumSubstatesForGroup(j1); m++) {
double gamma_jm_num = num_accs.gamma_[j1].Row(m).Sum();
double gamma_jm_den = den_accs.gamma_[j1].Row(m).Sum();
num_state_count += gamma_jm_num;
Vector<double> g_jm_num(S); // computed using eq. 58 of SGMM paper [for numerator stats]
SpMatrix<double> H_jm_num(S); // computed using eq. 59 of SGMM paper [for numerator stats]
Vector<double> g_jm_den(S); // same, but for denominator stats.
SpMatrix<double> H_jm_den(S);
// Compute the weights for this sub-state.
// w_jm = softmax([w_{k1}^T ... w_{kD}^T] * v_{jkm}) eq.(7)
w_jm.AddMatVec(1.0, Matrix<double>(model->w_), kNoTrans,
Vector<double>(model->v_[j1].Row(m)), 0.0);
w_jm.ApplySoftMax();
// Note: in the ML code, in the SSGMM case, at this point the w_jm would
// be modified with the "a" quantities to get the "\tilde{w}_{jm}" of the
// SSGMM techreport. But in this code, it gets done inside ComputePhoneVecStats.
ComputePhoneVecStats(num_accs, *model, H, j1, m, w_jm, gamma_jm_num,
&g_jm_num, &H_jm_num);
ComputePhoneVecStats(den_accs, *model, H, j1, m, w_jm, gamma_jm_den,
&g_jm_den, &H_jm_den);
Vector<double> v_jm(model->v_[j1].Row(m));
Vector<double> local_derivative(S); // difference of derivative of numerator
// and denominator objetive function.
local_derivative.AddVec(1.0, g_jm_num);
local_derivative.AddSpVec(-1.0, H_jm_num, v_jm, 1.0);
local_derivative.AddVec(-1.0, g_jm_den);
local_derivative.AddSpVec(-1.0 * -1.0, H_jm_den, v_jm, 1.0);
SpMatrix<double> quadratic_term(H_jm_num);
quadratic_term.AddSp(1.0, H_jm_den);
double substate_count = 1.0e-10 + gamma_jm_num + gamma_jm_den;
quadratic_term.Scale( (substate_count + options_.tau_v) / substate_count);
quadratic_term.Scale(1.0 / (options_.lrate_v + 1.0e-10) );
Vector<double> delta_v_jm(S);
SolverOptions opts;
opts.name = "v";
opts.K = options_.max_cond;
opts.eps = options_.epsilon;
double auxf_impr =
((gamma_jm_num + gamma_jm_den == 0) ? 0.0 :
SolveQuadraticProblem(quadratic_term,
local_derivative,
opts, &delta_v_jm));
v_jm.AddVec(1.0, delta_v_jm);
model->v_[j1].Row(m).CopyFromVec(v_jm);
state_auxf_impr += auxf_impr;
}
*auxf_impr += state_auxf_impr;
if (j1 < 10 && thread_id == 0) {
KALDI_LOG << "Objf impr for group j = " << j1 << " is "
<< (state_auxf_impr / (num_state_count + 1.0e-10))
<< " over " << num_state_count << " frames";
}
}
}
double EbwAmSgmm2Updater::UpdatePhoneVectors(const MleAmSgmm2Accs &num_accs,
const MleAmSgmm2Accs &den_accs,
const vector< SpMatrix<double> > &H,
AmSgmm2 *model) const {
KALDI_LOG << "Updating phone vectors.";
double count = 0.0, auxf_impr = 0.0;
int32 J1 = num_accs.num_groups_;
for (int32 j1 = 0; j1 < J1; j1++) count += num_accs.gamma_[j1].Sum();
EbwUpdatePhoneVectorsClass c(this, num_accs, den_accs, H, model, &auxf_impr);
RunMultiThreaded(c);
auxf_impr /= count;
KALDI_LOG << "**Overall auxf improvement for v is " << auxf_impr
<< " over " << count << " frames";
return auxf_impr;
}
double EbwAmSgmm2Updater::UpdateM(const MleAmSgmm2Accs &num_accs,
const MleAmSgmm2Accs &den_accs,
const std::vector< SpMatrix<double> > &Q_num,
const std::vector< SpMatrix<double> > &Q_den,
const Vector<double> &gamma_num,
const Vector<double> &gamma_den,
AmSgmm2 *model) const {
int32 S = model->PhoneSpaceDim(),
D = model->FeatureDim(),
I = model->NumGauss();
Vector<double> impr_vec(I);
for (int32 i = 0; i < I; i++) {
double gamma_i_num = gamma_num(i), gamma_i_den = gamma_den(i);
if (gamma_i_num + gamma_i_den == 0.0) {
KALDI_WARN << "Not updating phonetic basis for i = " << i
<< " because count is zero. ";
continue;
}
Matrix<double> Mi(model->M_[i]);
Matrix<double> L(D, S); // this is something like the Y quantity, which
// represents the linear term in the objf on M-- except that we make it the local
// derivative about the current value, instead of the derivative around zero.
// But it's not exactly the derivative w.r.t. M, due to the factor of Sigma_i.
// The auxiliary function is Q(x) = tr(M^T P Y) - 0.5 tr(P M Q M^T),
// where P is Y^{-1}. The quantity L we define here will be Y - M Q,
// and you can think of this as like the local derivative, except there is
// a term P in there.
L.AddMat(1.0, num_accs.Y_[i]);
L.AddMatSp(-1.0, Mi, kNoTrans, Q_num[i], 1.0);
L.AddMat(-1.0, den_accs.Y_[i]);
L.AddMatSp(-1.0*-1.0, Mi, kNoTrans, Q_den[i], 1.0);
SpMatrix<double> Q(S); // This is a combination of the Q's for the numerator and denominator.
Q.AddSp(1.0, Q_num[i]);
Q.AddSp(1.0, Q_den[i]);
double state_count = 1.0e-10 + gamma_i_num + gamma_i_den; // the count
// represented by the quadratic part of the stats.
Q.Scale( (state_count + options_.tau_M) / state_count );
Q.Scale( 1.0 / (options_.lrate_M + 1.0e-10) );
SolverOptions opts;
opts.name = "M";
opts.K = options_.max_cond;
opts.eps = options_.epsilon;
Matrix<double> deltaM(D, S);
double impr =
SolveQuadraticMatrixProblem(Q, L,
SpMatrix<double>(model->SigmaInv_[i]),
opts, &deltaM);
impr_vec(i) = impr;
Mi.AddMat(1.0, deltaM);
model->M_[i].CopyFromMat(Mi);
if (i < 10 || impr / state_count > 3.0) {
KALDI_VLOG(2) << "Objf impr for projection M for i = " << i << ", is "
<< (impr/(gamma_i_num + 1.0e-20)) << " over " << gamma_i_num
<< " frames";
}
}
BaseFloat tot_count = gamma_num.Sum(), tot_impr = impr_vec.Sum();
tot_impr /= (tot_count + 1.0e-20);
KALDI_LOG << "Overall auxiliary function improvement for model projections "
<< "M is " << tot_impr << " over " << tot_count << " frames";
KALDI_VLOG(1) << "Updating M: num-count is " << gamma_num;
KALDI_VLOG(1) << "Updating M: den-count is " << gamma_den;
KALDI_VLOG(1) << "Updating M: objf-impr is " << impr_vec;
return tot_impr;
}
// Note: we do just one iteration of the weight-projection update here. The
// weak-sense auxiliary functions used don't really make sense if we do it for
// multiple iterations. It would be possible to use a similar auxiliary
// function to the one on my (D. Povey)'s thesis for the Gaussian mixture
// weights, which would make sense for multiple iterations, but this would be a
// bit more complex to implement and probably would not give much improvement
// over this approach.
double EbwAmSgmm2Updater::UpdateW(const MleAmSgmm2Accs &num_accs,
const MleAmSgmm2Accs &den_accs,
const Vector<double> &gamma_num,
const Vector<double> &gamma_den,
AmSgmm2 *model) {
KALDI_LOG << "Updating weight projections";
int32 I = num_accs.num_gaussians_, S = num_accs.phn_space_dim_;
Matrix<double> g_i_num(I, S), g_i_den(I, S);
// View F_i_{num,den} as vectors of SpMatrix [i.e. symmetric matrices,
// linearized into vectors]
Matrix<double> F_i_num(I, (S*(S+1))/2), F_i_den(I, (S*(S+1))/2);
Vector<double> impr_vec(I);
// Get the F_i and g_i quantities-- this is done in parallel (multi-core),
// using the same code we use in the ML update [except we get it for
// numerator and denominator separately.]
Matrix<double> w(model->w_);
{
std::vector<Matrix<double> > log_a_num;
if (model->HasSpeakerDependentWeights())
MleAmSgmm2Updater::ComputeLogA(num_accs, &log_a_num);
double garbage;
UpdateWClass c_num(num_accs, *model, w, log_a_num, &F_i_num, &g_i_num, &garbage);
RunMultiThreaded(c_num);
}
{
std::vector<Matrix<double> > log_a_den;
if (model->HasSpeakerDependentWeights())
MleAmSgmm2Updater::ComputeLogA(den_accs, &log_a_den);
double garbage;
UpdateWClass c_den(den_accs, *model, w, log_a_den, &F_i_den, &g_i_den, &garbage);
RunMultiThreaded(c_den);
}
for (int32 i = 0; i < I; i++) {
// auxf was originally formulated in terms of the change in w (i.e. the
// g quantities are the local derivatives), so there is less hassle than
// with some of the other updates, in changing it to be discriminative.
// we essentially just difference the linear terms and add the quadratic
// terms.
Vector<double> derivative(g_i_num.Row(i));
derivative.AddVec(-1.0, g_i_den.Row(i));
// F_i_num quadratic_term is a bit like the negated 2nd derivative
// of the numerator stats-- actually it's not the actual 2nd deriv,
// but an upper bound on it.
SpMatrix<double> quadratic_term(S), tmp_F(S);
quadratic_term.CopyFromVec(F_i_num.Row(i));
tmp_F.CopyFromVec(F_i_den.Row(i)); // tmp_F is used for Vector->SpMatrix conversion.
quadratic_term.AddSp(1.0, tmp_F);
double state_count = gamma_num(i) + gamma_den(i);
quadratic_term.Scale((state_count + options_.tau_w) / (state_count + 1.0e-10));
quadratic_term.Scale(1.0 / (options_.lrate_w + 1.0e-10) );
Vector<double> delta_w(S);
SolverOptions opts;
opts.name = "w";
opts.K = options_.max_cond;
opts.eps = options_.epsilon;
double objf_impr =
SolveQuadraticProblem(quadratic_term, derivative, opts, &delta_w);
impr_vec(i) = objf_impr;
if (i < 10 || objf_impr / (gamma_num(i) + 1.0e-10) > 2.0) {
KALDI_LOG << "Predicted objf impr for w per frame is "
<< (objf_impr / (gamma_num(i) + 1.0e-10))
<< " over " << gamma_num(i) << " frames.";
}
model->w_.Row(i).AddVec(1.0, delta_w);
}
KALDI_VLOG(1) << "Updating w: numerator count is " << gamma_num;
KALDI_VLOG(1) << "Updating w: denominator count is " << gamma_den;
KALDI_VLOG(1) << "Updating w: objf-impr is " << impr_vec;
double tot_num_count = gamma_num.Sum(), tot_impr = impr_vec.Sum();
tot_impr /= tot_num_count;
KALDI_LOG << "**Overall objf impr for w per frame is "
<< tot_impr << " over " << tot_num_count
<< " frames.";
return tot_impr;
}
double EbwAmSgmm2Updater::UpdateU(const MleAmSgmm2Accs &num_accs,
const MleAmSgmm2Accs &den_accs,
const Vector<double> &gamma_num,
const Vector<double> &gamma_den,
AmSgmm2 *model) {
int32 T = num_accs.spk_space_dim_;
double tot_impr = 0.0;
for (int32 i = 0; i < num_accs.num_gaussians_; i++) {
if (gamma_num(i) < 200.0) {
KALDI_LOG << "Numerator count is small " << gamma_num(i) << " for gaussian "
<< i << ", not updating u_i.";
continue;
}
Vector<double> u_i(model->u_.Row(i));
Vector<double> delta_u(T);
Vector<double> t(T); // derivative.
t.AddVec(1.0, num_accs.t_.Row(i));
t.AddVec(-1.0, den_accs.t_.Row(i));
SpMatrix<double> U(T); // quadratic term.
U.AddSp(1.0, num_accs.U_[i]);
U.AddSp(1.0, den_accs.U_[i]);
double state_count = gamma_num(i) + gamma_den(i);
U.Scale((state_count + options_.tau_u) / (state_count + 1.0e-10));
U.Scale(1.0 / (options_.lrate_u + 1.0e-10) );
SolverOptions opts;
opts.name = "u";
opts.K = options_.max_cond;
opts.eps = options_.epsilon;
double impr = SolveQuadraticProblem(U, t, opts, &delta_u);
double impr_per_frame = impr / gamma_num(i);
if (impr_per_frame > options_.max_impr_u) {
KALDI_WARN << "Updating speaker weight projections u, for Gaussian index "
<< i << ", impr/frame is " << impr_per_frame << " over "
<< gamma_num(i) << " frames, scaling back to not exceed "
<< options_.max_impr_u;
double scale = options_.max_impr_u / impr_per_frame;
impr *= scale;
delta_u.Scale(scale);
// Note: a linear scaling of "impr" with "scale" is not quite accurate
// in depicting how the quadratic auxiliary function varies as we change
// the scale on "delta", but this does not really matter-- the goal is
// to limit the auxiliary-function change to not be too large.
}
if (i < 10) {
KALDI_LOG << "Objf impr for spk weight-projection u for i = " << (i)
<< ", is " << (impr / (gamma_num(i) + 1.0e-20)) << " over "
<< gamma_num(i) << " frames";
}
u_i.AddVec(1.0, delta_u);
model->u_.Row(i).CopyFromVec(u_i);
tot_impr += impr;
}
KALDI_LOG << "**Overall objf impr for u is " << (tot_impr/gamma_num.Sum())
<< ", over " << gamma_num.Sum() << " frames";
return tot_impr;
}
double EbwAmSgmm2Updater::UpdateN(const MleAmSgmm2Accs &num_accs,
const MleAmSgmm2Accs &den_accs,
const Vector<double> &gamma_num,
const Vector<double> &gamma_den,
AmSgmm2 *model) const {
if (num_accs.spk_space_dim_ == 0 || num_accs.R_.size() == 0 ||
num_accs.Z_.size() == 0) {
KALDI_ERR << "Speaker subspace dim is zero or no stats accumulated";
}
int32 I = num_accs.num_gaussians_, D = num_accs.feature_dim_,
T = num_accs.spk_space_dim_;
Vector<double> impr_vec(I);
for (int32 i = 0; i < I; i++) {
double gamma_i_num = gamma_num(i), gamma_i_den = gamma_den(i);
if (gamma_i_num + gamma_i_den == 0.0) {
KALDI_WARN << "Not updating speaker basis for i = " << i
<< " because count is zero. ";
continue;
}
Matrix<double> Ni(model->N_[i]);
// See comment near declaration of L in UpdateM(). This update is the
// same, but change M->N, Y->Z and Q->R.
Matrix<double> L(D, T);
L.AddMat(1.0, num_accs.Z_[i]);
L.AddMatSp(-1.0, Ni, kNoTrans, num_accs.R_[i], 1.0);
L.AddMat(-1.0, den_accs.Z_[i]);
L.AddMatSp(-1.0*-1.0, Ni, kNoTrans, den_accs.R_[i], 1.0);
SpMatrix<double> R(T); // combination of the numerator and denominator R's.
R.AddSp(1.0, num_accs.R_[i]);
R.AddSp(1.0, den_accs.R_[i]);
double state_count = 1.0e-10 + gamma_i_num + gamma_i_den; // the count
// represented by the quadratic part of the stats.
R.Scale( (state_count + options_.tau_N) / state_count );
R.Scale( 1.0 / (options_.lrate_N + 1.0e-10) );
Matrix<double> deltaN(D, T);
SolverOptions opts;
opts.name = "N";
opts.K = options_.max_cond;
opts.eps = options_.epsilon;
double impr =
SolveQuadraticMatrixProblem(R, L,
SpMatrix<double>(model->SigmaInv_[i]),
opts, &deltaN);
impr_vec(i) = impr;
Ni.AddMat(1.0, deltaN);
model->N_[i].CopyFromMat(Ni);
if (i < 10 || impr / (state_count+1.0e-20) > 3.0) {
KALDI_LOG << "Objf impr for spk projection N for i = " << (i)
<< ", is " << (impr / (gamma_i_num + 1.0e-20)) << " over "
<< gamma_i_num << " frames";
}
}
KALDI_VLOG(1) << "Updating N: numerator count is " << gamma_num;
KALDI_VLOG(1) << "Updating N: denominator count is " << gamma_den;
KALDI_VLOG(1) << "Updating N: objf-impr is " << impr_vec;
double tot_count = gamma_num.Sum(), tot_impr = impr_vec.Sum();
tot_impr /= (tot_count + 1.0e-20);
KALDI_LOG << "**Overall auxf impr for N is " << tot_impr
<< " over " << tot_count << " frames";
return tot_impr;
}
double EbwAmSgmm2Updater::UpdateVars(const MleAmSgmm2Accs &num_accs,
const MleAmSgmm2Accs &den_accs,
const Vector<double> &gamma_num,
const Vector<double> &gamma_den,
const std::vector< SpMatrix<double> > &S_means,
AmSgmm2 *model) const {
// Note: S_means contains not only the quantity S_means in the paper,
// but also has a term - (Y_i M_i^T + M_i Y_i^T). Plus, it is differenced
// between numerator and denominator. We don't calculate it here,
// because it had to be computed with the original model, before we
// changed the M quantities.
int32 I = num_accs.num_gaussians_;
KALDI_ASSERT(S_means.size() == I);
Vector<double> impr_vec(I);
for (int32 i = 0; i < I; i++) {
double num_count = gamma_num(i), den_count = gamma_den(i);
SpMatrix<double> SigmaStats(S_means[i]);
SigmaStats.AddSp(1.0, num_accs.S_[i]);
SigmaStats.AddSp(-1.0, den_accs.S_[i]);
// SigmaStats now contain the stats for estimating Sigma (as in the main SGMM paper),
// differenced between num and den.
SpMatrix<double> SigmaInvOld(model->SigmaInv_[i]), SigmaOld(model->SigmaInv_[i]);
SigmaOld.Invert();
double count = num_count - den_count;
KALDI_ASSERT(options_.lrate_Sigma <= 1.0);
double inv_lrate = 1.0 / options_.lrate_Sigma;
// These formulas assure that the objective function behaves in
// a roughly symmetric way w.r.t. num and den counts.
double E_den = 1.0 + inv_lrate, E_num = inv_lrate - 1.0;
double smoothing_count =
(options_.tau_Sigma * inv_lrate) + // multiply tau_Sigma by inverse-lrate
(E_den * den_count) + // for compatibility with other updates.
(E_num * num_count) +
1.0e-10;
SigmaStats.AddSp(smoothing_count, SigmaOld);
count += smoothing_count;
SigmaStats.Scale(1.0 / count);
SpMatrix<double> SigmaInv(SigmaStats); // before floor and ceiling. Currently sigma,
// not its inverse.
bool verbose = false;
int n_floor = SigmaInv.ApplyFloor(SigmaOld, options_.cov_min_value, verbose);
SigmaInv.Invert(); // make it inverse variance.
int n_ceiling = SigmaInv.ApplyFloor(SigmaInvOld, options_.cov_min_value, verbose);
// this auxf_change.
double auxf_change = -0.5 * count *(TraceSpSp(SigmaInv, SigmaStats)
- TraceSpSp(SigmaInvOld, SigmaStats)
- SigmaInv.LogDet()
+ SigmaInvOld.LogDet());
model->SigmaInv_[i].CopyFromSp(SigmaInv);
impr_vec(i) = auxf_change;
if (i < 10 || auxf_change / (num_count+den_count+1.0e-10) > 2.0
|| n_floor+n_ceiling > 0) {
KALDI_LOG << "Updating variance: Auxf change per frame for Gaussian "
<< i << " is " << (auxf_change / num_count) << " over "
<< num_count << " frames " << "(den count was " << den_count
<< "), #floor,ceil was " << n_floor << ", " << n_ceiling;
}
}
KALDI_VLOG(1) << "Updating Sigma: numerator count is " << gamma_num;
KALDI_VLOG(1) << "Updating Sigma: denominator count is " << gamma_den;
KALDI_VLOG(1) << "Updating Sigma: objf-impr is " << impr_vec;
double tot_count = gamma_num.Sum(), tot_impr = impr_vec.Sum();
tot_impr /= tot_count+1.0e-20;
KALDI_LOG << "**Overall auxf impr for Sigma is " << tot_impr
<< " over " << tot_count << " frames";
return tot_impr;
}
double EbwAmSgmm2Updater::UpdateSubstateWeights(
const MleAmSgmm2Accs &num_accs,
const MleAmSgmm2Accs &den_accs,
AmSgmm2 *model) {
KALDI_LOG << "Updating substate mixture weights";
double tot_count = 0.0, tot_impr = 0.0;
for (int32 j2 = 0; j2 < num_accs.num_pdfs_; j2++) {
int32 M = model->NumSubstatesForPdf(j2);
Vector<double> num_occs(M), den_occs(M),
orig_weights(model->c_[j2]), weights(model->c_[j2]);
for (int32 m = 0; m < M; m++) {
num_occs(m) = num_accs.gamma_c_[j2](m)
+ options_.tau_c * weights(m);
den_occs(m) = den_accs.gamma_c_[j2](m);
}
if (weights.Dim() > 1) {
double begin_auxf = 0.0, end_auxf = 0.0;
for (int32 m = 0; m < M; m++) { // see eq. 4.32, Dan Povey's PhD thesis.
begin_auxf += num_occs(m) * log (weights(m))
- den_occs(m) * weights(m) / orig_weights(m);
}
for (int32 iter = 0; iter < 50; iter++) {
Vector<double> k_jm(M);
double max_m = 0.0;
for (int32 m = 0; m < M; m++)
max_m = std::max(max_m, den_occs(m)/orig_weights(m));
for (int32 m = 0; m < M; m++)
k_jm(m) = max_m - den_occs(m)/orig_weights(m);
for (int32 m = 0; m < M; m++)
weights(m) = num_occs(m) + k_jm(m)*weights(m);
weights.Scale(1.0 / weights.Sum());
}
for (int32 m = 0; m < M; m++)
weights(m) = std::max(weights(m),
static_cast<double>(options_.min_substate_weight));
weights.Scale(1.0 / weights.Sum()); // renormalize.
for (int32 m = 0; m < M; m++) {
end_auxf += num_occs(m) * log (weights(m))
- den_occs(m) * weights(m) / orig_weights(m);
}
tot_impr += end_auxf - begin_auxf;
double this_impr = ((end_auxf - begin_auxf) / num_occs.Sum());
if (j2 < 10 || this_impr > 0.5) {
KALDI_LOG << "Updating substate weights: auxf impr for pdf " << j2
<< " is " << this_impr << " per frame over " << num_occs.Sum()
<< " frames (den count is " << den_occs.Sum() << ")";
}
}
model->c_[j2].CopyFromVec(weights);
tot_count += den_occs.Sum(); // Note: num and den occs should be the
// same, except num occs are smoothed, so this is what we want.
}
tot_impr /= (tot_count + 1.0e-20);
KALDI_LOG << "**Overall auxf impr for c is " << tot_impr
<< " over " << tot_count << " frames";
return tot_impr;
}
} // namespace kaldi