Blame view
src/sgmm2/estimate-am-sgmm2.h
19.3 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
// sgmm2/estimate-am-sgmm2.h // Copyright 2009-2011 Microsoft Corporation; Lukas Burget; // Saarland University (Author: Arnab Ghoshal); // Ondrej Glembek; Yanmin Qian; // Copyright 2012-2013 Johns Hopkins University (Author: Daniel Povey) // Liang Lu; Arnab Ghoshal // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_SGMM2_ESTIMATE_AM_SGMM2_H_ #define KALDI_SGMM2_ESTIMATE_AM_SGMM2_H_ 1 #include <string> #include <vector> #include "sgmm2/am-sgmm2.h" #include "gmm/model-common.h" #include "itf/options-itf.h" #include "util/kaldi-thread.h" namespace kaldi { /** \struct MleAmSgmm2Options * Configuration variables needed in the SGMM estimation process. */ struct MleAmSgmm2Options { /// Smoothing constant for sub-state weights [count to add to each one]. BaseFloat tau_c; /// Floor covariance matrices Sigma_i to this times average cov. BaseFloat cov_floor; /// ratio to dim below which we use diagonal. default 2, set to inf for diag. BaseFloat cov_diag_ratio; /// Max on condition of matrices in update beyond which we do not update. /// Should probably be related to numerical properties of machine /// or BaseFloat type. BaseFloat max_cond; bool renormalize_V; // Renormalize the phonetic space. bool renormalize_N; // Renormalize the speaker space. /// Number of iters when re-estimating weight projections "w". int weight_projections_iters; BaseFloat epsilon; ///< very small value used to prevent SVD crashing. BaseFloat max_impr_u; ///< max improvement per frame allowed in update of u. BaseFloat tau_map_M; ///< For MAP update of the phonetic subspace M int map_M_prior_iters; ///< num of iterations to update the prior of M bool full_row_cov; ///< Estimate row covariance instead of using I bool full_col_cov; ///< Estimate col covariance instead of using I MleAmSgmm2Options() { cov_floor = 0.025; tau_c = 2.0; cov_diag_ratio = 2.0; // set this to very large to get diagonal-cov models. max_cond = 1.0e+05; epsilon = 1.0e-40; renormalize_V = true; renormalize_N = false; // default to false since will invalidate spk vectors // on disk. weight_projections_iters = 3; max_impr_u = 0.25; map_M_prior_iters = 5; tau_map_M = 0.0; // No MAP update by default (~500-1000 depending on prior) full_row_cov = false; full_col_cov = false; } void Register(OptionsItf *opts) { std::string module = "MleAmSgmm2Options: "; opts->Register("tau-c", &tau_c, module+ "Count for smoothing weight update."); opts->Register("cov-floor", &cov_floor, module+ "Covariance floor (fraction of average covariance)."); opts->Register("cov-diag-ratio", &cov_diag_ratio, module+ "Minimum occ/dim ratio below which use diagonal covariances."); opts->Register("max-cond", &max_cond, module+"Maximum condition number used to " "regularize the solution of certain quadratic auxiliary functions."); opts->Register("weight-projections-iters", &weight_projections_iters, module+ "Number for iterations for weight projection estimation."); opts->Register("renormalize-v", &renormalize_V, module+"If true, renormalize " "the phonetic-subspace vectors to have meaningful sizes."); opts->Register("renormalize-n", &renormalize_N, module+"If true, renormalize " "the speaker subspace to have meaningful sizes."); opts->Register("max-impr-u", &max_impr_u, module+"Maximum objective function " "improvement per frame allowed in update of u (to " "maintain stability."); opts->Register("tau-map-M", &tau_map_M, module+"Smoothing for MAP estimate " "of M (0 means ML update)."); opts->Register("map-M-prior-iters", &map_M_prior_iters, module+ "Number of iterations to estimate prior covariances for M."); opts->Register("full-row-cov", &full_row_cov, module+ "Estimate row covariance instead of using I."); opts->Register("full-col-cov", &full_col_cov, module+ "Estimate column covariance instead of using I."); } }; /** \class MleAmSgmm2Accs * Class for the accumulators associated with the phonetic-subspace model * parameters */ class MleAmSgmm2Accs { public: explicit MleAmSgmm2Accs(BaseFloat rand_prune = 1.0e-05) : total_frames_(0.0), total_like_(0.0), feature_dim_(0), phn_space_dim_(0), spk_space_dim_(0), num_gaussians_(0), num_pdfs_(0), num_groups_(0), rand_prune_(rand_prune) {} MleAmSgmm2Accs(const AmSgmm2 &model, SgmmUpdateFlagsType flags, bool have_spk_vecs, BaseFloat rand_prune = 1.0e-05) : total_frames_(0.0), total_like_(0.0), rand_prune_(rand_prune) { ResizeAccumulators(model, flags, have_spk_vecs); } ~MleAmSgmm2Accs(); void Read(std::istream &in_stream, bool binary, bool add); void Write(std::ostream &out_stream, bool binary) const; /// Checks the various accumulators for correct sizes given a model. With /// wrong sizes, assertion failure occurs. When the show_properties argument /// is set to true, dimensions and presence/absence of the various /// accumulators are printed. For use when accumulators are read from file. void Check(const AmSgmm2 &model, bool show_properties = true) const; /// Resizes the accumulators to the correct sizes given the model. The flags /// argument controls which accumulators to resize. void ResizeAccumulators(const AmSgmm2 &model, SgmmUpdateFlagsType flags, bool have_spk_vecs); /// Returns likelihood. BaseFloat Accumulate(const AmSgmm2 &model, const Sgmm2PerFrameDerivedVars &frame_vars, int32 pdf_index, // == j2. BaseFloat weight, Sgmm2PerSpkDerivedVars *spk_vars); /// Returns count accumulated (may differ from posteriors.Sum() /// due to weight pruning). BaseFloat AccumulateFromPosteriors(const AmSgmm2 &model, const Sgmm2PerFrameDerivedVars &frame_vars, const Matrix<BaseFloat> &posteriors, int32 pdf_index, // == j2. Sgmm2PerSpkDerivedVars *spk_vars); /// Accumulates global stats for the current speaker (if applicable). If /// flags contains kSgmmSpeakerProjections (N), or /// kSgmmSpeakerWeightProjections (u), must call this after finishing the /// speaker's data. void CommitStatsForSpk(const AmSgmm2 &model, const Sgmm2PerSpkDerivedVars &spk_vars); /// Accessors void GetStateOccupancies(Vector<BaseFloat> *occs) const; int32 FeatureDim() const { return feature_dim_; } int32 PhoneSpaceDim() const { return phn_space_dim_; } int32 NumPdfs() const { return num_pdfs_; } // returns J2 int32 NumGroups() const { return num_groups_; } // returns J1 int32 NumGauss() const { return num_gaussians_; } private: /// The stats which are not tied to any state. /// Stats Y_{i} for phonetic-subspace projections M; Dim is [I][D][S]. std::vector< Matrix<double> > Y_; /// Stats Z_{i} for speaker-subspace projections N. Dim is [I][D][T]. std::vector< Matrix<double> > Z_; /// R_{i}, quadratic term for speaker subspace estimation. Dim is [I][T][T] std::vector< SpMatrix<double> > R_; /// S_{i}^{-}, scatter of adapted feature vectors x_{i}(t). Dim is [I][D][D]. std::vector< SpMatrix<double> > S_; /// The SGMM state specific stats. /// Statistics y_{jm} for state vectors v_{jm}. dimension is [J1][#mix][S]. std::vector< Matrix<double> > y_; /// Gaussian occupancies gamma_{jmi} for each substate and Gaussian index, /// pooled over groups. Dim is [J1][#mix][I]. std::vector< Matrix<double> > gamma_; /// [SSGMM] These a_{jmi} quantities are dimensionally the same /// as the gamma quantities. They're needed to estimate the v_{jm} /// and w_i quantities in the symmetric SGMM. Dimension is [J1][#mix][S] std::vector< Matrix<double> > a_; /// [SSGMM] each row is one of the t_i quantities in the less-exact /// version of the SSGMM update for the speaker weight projections. /// Dimension is [I][T] Matrix<double> t_; /// [SSGMM], this is a per-speaker variable storing the a_i^{(s)} /// quantities that we will use in order to compute the non-speaker- /// specific quantities [see eqs. 53 and 54 in techreport]. Note: /// there is a separate variable a_s_ in class MleSgmm2SpeakerAccs, /// which is the same thing but for purposes of computing /// the speaker-vector v^{(s)}. Vector<double> a_s_; /// the U_i quantities from the less-exact version of the SSGMM update for the /// speaker weight projections. Dimension is [I][T][T] std::vector<SpMatrix<double> > U_; /// Sub-state occupancies gamma_{jm}^{(c)} for each sub-state. In the /// SCTM version of the SGMM, for compactness we store two separate /// sets of gamma statistics, one to estimate the v_{jm} quantities /// and one to estimate the sub-state weights c_{jm}. std::vector< Vector<double> > gamma_c_; /// gamma_{i}^{(s)}. Per-speaker counts for each Gaussian. Dimension is [I] /// Needed for stats R_. This can be viewed as a temporary variable; it /// does not form part of the stats that we eventually dump to disk. Vector<double> gamma_s_; double total_frames_, total_like_; /// Dimensionality of various subspaces int32 feature_dim_, phn_space_dim_, spk_space_dim_; int32 num_gaussians_, num_pdfs_, num_groups_; ///< Other model specifications BaseFloat rand_prune_; KALDI_DISALLOW_COPY_AND_ASSIGN(MleAmSgmm2Accs); friend class MleAmSgmm2Updater; friend class EbwAmSgmm2Updater; }; /** \class MleAmSgmmUpdater * Contains the functions needed to update the SGMM parameters. */ class MleAmSgmm2Updater { public: explicit MleAmSgmm2Updater(const MleAmSgmm2Options &options) : options_(options) {} void Reconfigure(const MleAmSgmm2Options &options) { options_ = options; } void Update(const MleAmSgmm2Accs &accs, AmSgmm2 *model, SgmmUpdateFlagsType flags); private: friend class UpdateWClass; friend class UpdatePhoneVectorsClass; friend class EbwEstimateAmSgmm2; /// Compute the Q_i quantities (Eq. 64). static void ComputeQ(const MleAmSgmm2Accs &accs, const AmSgmm2 &model, std::vector< SpMatrix<double> > *Q); /// Compute the S_means quantities, minus sum: (Y_i M_i^T + M_i Y_I^T). static void ComputeSMeans(const MleAmSgmm2Accs &accs, const AmSgmm2 &model, std::vector< SpMatrix<double> > *S_means); friend class EbwAmSgmm2Updater; MleAmSgmm2Options options_; // Called from UpdatePhoneVectors; updates a subset of states // (relates to multi-threading). void UpdatePhoneVectorsInternal(const MleAmSgmm2Accs &accs, const std::vector<SpMatrix<double> > &H, const std::vector<Matrix<double> > &log_a, AmSgmm2 *model, double *auxf_impr, int32 num_threads, int32 thread_id) const; double UpdatePhoneVectors(const MleAmSgmm2Accs &accs, const std::vector<SpMatrix<double> > &H, const std::vector<Matrix<double> > &log_a, AmSgmm2 *model) const; double UpdateM(const MleAmSgmm2Accs &accs, const std::vector< SpMatrix<double> > &Q, const Vector<double> &gamma_i, AmSgmm2 *model); void RenormalizeV(const MleAmSgmm2Accs &accs, AmSgmm2 *model, const Vector<double> &gamma_i, const std::vector<SpMatrix<double> > &H); double UpdateN(const MleAmSgmm2Accs &accs, const Vector<double> &gamma_i, AmSgmm2 *model); void RenormalizeN(const MleAmSgmm2Accs &accs, const Vector<double> &gamma_i, AmSgmm2 *model); double UpdateVars(const MleAmSgmm2Accs &accs, const std::vector< SpMatrix<double> > &S_means, const Vector<double> &gamma_i, AmSgmm2 *model); // Update for the phonetic-subspace weight projections w_i double UpdateW(const MleAmSgmm2Accs &accs, const std::vector<Matrix<double> > &log_a, const Vector<double> &gamma_i, AmSgmm2 *model); // Update for the speaker-subspace weight projections u_i [SSGMM] double UpdateU(const MleAmSgmm2Accs &accs, const Vector<double> &gamma_i, AmSgmm2 *model); /// Called, multithreaded, inside UpdateW static void UpdateWGetStats(const MleAmSgmm2Accs &accs, const AmSgmm2 &model, const Matrix<double> &w, const std::vector<Matrix<double> > &log_a, Matrix<double> *F_i, Matrix<double> *g_i, double *tot_like, int32 num_threads, int32 thread_id); double UpdateSubstateWeights(const MleAmSgmm2Accs &accs, AmSgmm2 *model); static void ComputeLogA(const MleAmSgmm2Accs &accs, std::vector<Matrix<double> > *log_a); // [SSGMM] void ComputeMPrior(AmSgmm2 *model); // TODO(arnab): Maybe make this static? double MapUpdateM(const MleAmSgmm2Accs &accs, const std::vector< SpMatrix<double> > &Q, const Vector<double> &gamma_i, AmSgmm2 *model); KALDI_DISALLOW_COPY_AND_ASSIGN(MleAmSgmm2Updater); MleAmSgmm2Updater() {} // Prevent unconfigured updater. }; /** \class MleSgmm2SpeakerAccs * Class for the accumulators required to update the speaker * vectors v_s. * Note: if you have multiple speakers you will want to initialize * this just once and call Clear() after you're done with each speaker, * rather than creating a new object for each speaker, since the * initialization function does nontrivial work. */ class MleSgmm2SpeakerAccs { public: /// Initialize the object. Error if speaker subspace not set up. MleSgmm2SpeakerAccs(const AmSgmm2 &model, BaseFloat rand_prune_ = 1.0e-05); /// Clear the statistics. void Clear(); /// Accumulate statistics. Returns per-frame log-likelihood. BaseFloat Accumulate(const AmSgmm2 &model, const Sgmm2PerFrameDerivedVars &frame_vars, int32 pdf_index, BaseFloat weight, Sgmm2PerSpkDerivedVars *spk_vars); /// Accumulate statistics, given posteriors. Returns total /// count accumulated, which may differ from posteriors.Sum() /// due to randomized pruning. BaseFloat AccumulateFromPosteriors(const AmSgmm2 &model, const Sgmm2PerFrameDerivedVars &frame_vars, const Matrix<BaseFloat> &posteriors, int32 pdf_index, Sgmm2PerSpkDerivedVars *spk_vars); /// Update speaker vector. If v_s was empty, will assume it started as zero /// and will resize it to the speaker-subspace size. void Update(const AmSgmm2 &model, BaseFloat min_count, // e.g. 100 Vector<BaseFloat> *v_s, BaseFloat *objf_impr_out, BaseFloat *count_out); private: // Update without speaker-dependent weights (vectors u_i), // i.e. not symmetric SGMM (SSGMM) void UpdateNoU(Vector<BaseFloat> *v_s, BaseFloat *objf_impr_out, BaseFloat *count_out); // Update for SSGMM void UpdateWithU(const AmSgmm2 &model, Vector<BaseFloat> *v_s, BaseFloat *objf_impr_out, BaseFloat *count_out); /// Statistics for speaker adaptation (vectors), stored per-speaker. /// Per-speaker stats for vectors, y^{(s)}. Dimension [T]. Vector<double> y_s_; /// gamma_{i}^{(s)}. Per-speaker counts for each Gaussian. Dimension is [I] Vector<double> gamma_s_; /// a_i^{(s)}. For SSGMM. Vector<double> a_s_; /// The following variable does not change per speaker, it just /// relates to the speaker subspace. /// Eq. (82): H_{i}^{spk} = N_{i}^T \Sigma_{i}^{-1} N_{i} std::vector< SpMatrix<double> > H_spk_; /// N_i^T \Sigma_{i}^{-1}. Needed for y^{(s)} std::vector< Matrix<double> > NtransSigmaInv_; /// small constant to randomly prune tiny posteriors BaseFloat rand_prune_; }; // This class, used in multi-core implementation of the updates of the "w_i" // quantities, was previously in estimate-am-sgmm.cc, but is being moved to the // header so it can be used in estimate-am-sgmm-ebw.cc. It is responsible for // computing, in parallel, the F_i and g_i quantities used in the updates of // w_i. class UpdateWClass: public MultiThreadable { public: UpdateWClass(const MleAmSgmm2Accs &accs, const AmSgmm2 &model, const Matrix<double> &w, const std::vector<Matrix<double> > &log_a, Matrix<double> *F_i, Matrix<double> *g_i, double *tot_like): accs_(accs), model_(model), w_(w), log_a_(log_a), F_i_ptr_(F_i), g_i_ptr_(g_i), tot_like_ptr_(tot_like) { tot_like_ = 0.0; F_i_.Resize(F_i->NumRows(), F_i->NumCols()); g_i_.Resize(g_i->NumRows(), g_i->NumCols()); } UpdateWClass(const UpdateWClass &other) : MultiThreadable(other), accs_(other.accs_), model_(other.model_), w_(other.w_), log_a_(other.log_a_), F_i_ptr_(other.F_i_ptr_), g_i_ptr_(other.g_i_ptr_), F_i_(other.F_i_), g_i_(other.g_i_), tot_like_ptr_(other.tot_like_ptr_), tot_like_(0.0) { } ~UpdateWClass() { F_i_ptr_->AddMat(1.0, F_i_, kNoTrans); g_i_ptr_->AddMat(1.0, g_i_, kNoTrans); *tot_like_ptr_ += tot_like_; } inline void operator() () { // Note: give them local copy of the sums we're computing, // which will be propagated to the total sums in the destructor. MleAmSgmm2Updater::UpdateWGetStats(accs_, model_, w_, log_a_, &F_i_, &g_i_, &tot_like_, num_threads_, thread_id_); } private: const MleAmSgmm2Accs &accs_; const AmSgmm2 &model_; const Matrix<double> &w_; const std::vector<Matrix<double> > &log_a_; Matrix<double> *F_i_ptr_; Matrix<double> *g_i_ptr_; Matrix<double> F_i_; Matrix<double> g_i_; double *tot_like_ptr_; double tot_like_; }; } // namespace kaldi #endif // KALDI_SGMM2_ESTIMATE_AM_SGMM2_H_ |