estimate-am-sgmm2.h
19.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
// sgmm2/estimate-am-sgmm2.h
// Copyright 2009-2011 Microsoft Corporation; Lukas Burget;
// Saarland University (Author: Arnab Ghoshal);
// Ondrej Glembek; Yanmin Qian;
// Copyright 2012-2013 Johns Hopkins University (Author: Daniel Povey)
// Liang Lu; Arnab Ghoshal
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_SGMM2_ESTIMATE_AM_SGMM2_H_
#define KALDI_SGMM2_ESTIMATE_AM_SGMM2_H_ 1
#include <string>
#include <vector>
#include "sgmm2/am-sgmm2.h"
#include "gmm/model-common.h"
#include "itf/options-itf.h"
#include "util/kaldi-thread.h"
namespace kaldi {
/** \struct MleAmSgmm2Options
* Configuration variables needed in the SGMM estimation process.
*/
struct MleAmSgmm2Options {
/// Smoothing constant for sub-state weights [count to add to each one].
BaseFloat tau_c;
/// Floor covariance matrices Sigma_i to this times average cov.
BaseFloat cov_floor;
/// ratio to dim below which we use diagonal. default 2, set to inf for diag.
BaseFloat cov_diag_ratio;
/// Max on condition of matrices in update beyond which we do not update.
/// Should probably be related to numerical properties of machine
/// or BaseFloat type.
BaseFloat max_cond;
bool renormalize_V; // Renormalize the phonetic space.
bool renormalize_N; // Renormalize the speaker space.
/// Number of iters when re-estimating weight projections "w".
int weight_projections_iters;
BaseFloat epsilon; ///< very small value used to prevent SVD crashing.
BaseFloat max_impr_u; ///< max improvement per frame allowed in update of u.
BaseFloat tau_map_M; ///< For MAP update of the phonetic subspace M
int map_M_prior_iters; ///< num of iterations to update the prior of M
bool full_row_cov; ///< Estimate row covariance instead of using I
bool full_col_cov; ///< Estimate col covariance instead of using I
MleAmSgmm2Options() {
cov_floor = 0.025;
tau_c = 2.0;
cov_diag_ratio = 2.0; // set this to very large to get diagonal-cov models.
max_cond = 1.0e+05;
epsilon = 1.0e-40;
renormalize_V = true;
renormalize_N = false; // default to false since will invalidate spk vectors
// on disk.
weight_projections_iters = 3;
max_impr_u = 0.25;
map_M_prior_iters = 5;
tau_map_M = 0.0; // No MAP update by default (~500-1000 depending on prior)
full_row_cov = false;
full_col_cov = false;
}
void Register(OptionsItf *opts) {
std::string module = "MleAmSgmm2Options: ";
opts->Register("tau-c", &tau_c, module+
"Count for smoothing weight update.");
opts->Register("cov-floor", &cov_floor, module+
"Covariance floor (fraction of average covariance).");
opts->Register("cov-diag-ratio", &cov_diag_ratio, module+
"Minimum occ/dim ratio below which use diagonal covariances.");
opts->Register("max-cond", &max_cond, module+"Maximum condition number used to "
"regularize the solution of certain quadratic auxiliary functions.");
opts->Register("weight-projections-iters", &weight_projections_iters, module+
"Number for iterations for weight projection estimation.");
opts->Register("renormalize-v", &renormalize_V, module+"If true, renormalize "
"the phonetic-subspace vectors to have meaningful sizes.");
opts->Register("renormalize-n", &renormalize_N, module+"If true, renormalize "
"the speaker subspace to have meaningful sizes.");
opts->Register("max-impr-u", &max_impr_u, module+"Maximum objective function "
"improvement per frame allowed in update of u (to "
"maintain stability.");
opts->Register("tau-map-M", &tau_map_M, module+"Smoothing for MAP estimate "
"of M (0 means ML update).");
opts->Register("map-M-prior-iters", &map_M_prior_iters, module+
"Number of iterations to estimate prior covariances for M.");
opts->Register("full-row-cov", &full_row_cov, module+
"Estimate row covariance instead of using I.");
opts->Register("full-col-cov", &full_col_cov, module+
"Estimate column covariance instead of using I.");
}
};
/** \class MleAmSgmm2Accs
* Class for the accumulators associated with the phonetic-subspace model
* parameters
*/
class MleAmSgmm2Accs {
public:
explicit MleAmSgmm2Accs(BaseFloat rand_prune = 1.0e-05)
: total_frames_(0.0), total_like_(0.0), feature_dim_(0),
phn_space_dim_(0), spk_space_dim_(0), num_gaussians_(0),
num_pdfs_(0), num_groups_(0), rand_prune_(rand_prune) {}
MleAmSgmm2Accs(const AmSgmm2 &model, SgmmUpdateFlagsType flags,
bool have_spk_vecs,
BaseFloat rand_prune = 1.0e-05)
: total_frames_(0.0), total_like_(0.0), rand_prune_(rand_prune) {
ResizeAccumulators(model, flags, have_spk_vecs);
}
~MleAmSgmm2Accs();
void Read(std::istream &in_stream, bool binary, bool add);
void Write(std::ostream &out_stream, bool binary) const;
/// Checks the various accumulators for correct sizes given a model. With
/// wrong sizes, assertion failure occurs. When the show_properties argument
/// is set to true, dimensions and presence/absence of the various
/// accumulators are printed. For use when accumulators are read from file.
void Check(const AmSgmm2 &model, bool show_properties = true) const;
/// Resizes the accumulators to the correct sizes given the model. The flags
/// argument controls which accumulators to resize.
void ResizeAccumulators(const AmSgmm2 &model, SgmmUpdateFlagsType flags,
bool have_spk_vecs);
/// Returns likelihood.
BaseFloat Accumulate(const AmSgmm2 &model,
const Sgmm2PerFrameDerivedVars &frame_vars,
int32 pdf_index, // == j2.
BaseFloat weight,
Sgmm2PerSpkDerivedVars *spk_vars);
/// Returns count accumulated (may differ from posteriors.Sum()
/// due to weight pruning).
BaseFloat AccumulateFromPosteriors(const AmSgmm2 &model,
const Sgmm2PerFrameDerivedVars &frame_vars,
const Matrix<BaseFloat> &posteriors,
int32 pdf_index, // == j2.
Sgmm2PerSpkDerivedVars *spk_vars);
/// Accumulates global stats for the current speaker (if applicable). If
/// flags contains kSgmmSpeakerProjections (N), or
/// kSgmmSpeakerWeightProjections (u), must call this after finishing the
/// speaker's data.
void CommitStatsForSpk(const AmSgmm2 &model,
const Sgmm2PerSpkDerivedVars &spk_vars);
/// Accessors
void GetStateOccupancies(Vector<BaseFloat> *occs) const;
int32 FeatureDim() const { return feature_dim_; }
int32 PhoneSpaceDim() const { return phn_space_dim_; }
int32 NumPdfs() const { return num_pdfs_; } // returns J2
int32 NumGroups() const { return num_groups_; } // returns J1
int32 NumGauss() const { return num_gaussians_; }
private:
/// The stats which are not tied to any state.
/// Stats Y_{i} for phonetic-subspace projections M; Dim is [I][D][S].
std::vector< Matrix<double> > Y_;
/// Stats Z_{i} for speaker-subspace projections N. Dim is [I][D][T].
std::vector< Matrix<double> > Z_;
/// R_{i}, quadratic term for speaker subspace estimation. Dim is [I][T][T]
std::vector< SpMatrix<double> > R_;
/// S_{i}^{-}, scatter of adapted feature vectors x_{i}(t). Dim is [I][D][D].
std::vector< SpMatrix<double> > S_;
/// The SGMM state specific stats.
/// Statistics y_{jm} for state vectors v_{jm}. dimension is [J1][#mix][S].
std::vector< Matrix<double> > y_;
/// Gaussian occupancies gamma_{jmi} for each substate and Gaussian index,
/// pooled over groups. Dim is [J1][#mix][I].
std::vector< Matrix<double> > gamma_;
/// [SSGMM] These a_{jmi} quantities are dimensionally the same
/// as the gamma quantities. They're needed to estimate the v_{jm}
/// and w_i quantities in the symmetric SGMM. Dimension is [J1][#mix][S]
std::vector< Matrix<double> > a_;
/// [SSGMM] each row is one of the t_i quantities in the less-exact
/// version of the SSGMM update for the speaker weight projections.
/// Dimension is [I][T]
Matrix<double> t_;
/// [SSGMM], this is a per-speaker variable storing the a_i^{(s)}
/// quantities that we will use in order to compute the non-speaker-
/// specific quantities [see eqs. 53 and 54 in techreport]. Note:
/// there is a separate variable a_s_ in class MleSgmm2SpeakerAccs,
/// which is the same thing but for purposes of computing
/// the speaker-vector v^{(s)}.
Vector<double> a_s_;
/// the U_i quantities from the less-exact version of the SSGMM update for the
/// speaker weight projections. Dimension is [I][T][T]
std::vector<SpMatrix<double> > U_;
/// Sub-state occupancies gamma_{jm}^{(c)} for each sub-state. In the
/// SCTM version of the SGMM, for compactness we store two separate
/// sets of gamma statistics, one to estimate the v_{jm} quantities
/// and one to estimate the sub-state weights c_{jm}.
std::vector< Vector<double> > gamma_c_;
/// gamma_{i}^{(s)}. Per-speaker counts for each Gaussian. Dimension is [I]
/// Needed for stats R_. This can be viewed as a temporary variable; it
/// does not form part of the stats that we eventually dump to disk.
Vector<double> gamma_s_;
double total_frames_, total_like_;
/// Dimensionality of various subspaces
int32 feature_dim_, phn_space_dim_, spk_space_dim_;
int32 num_gaussians_, num_pdfs_, num_groups_; ///< Other model specifications
BaseFloat rand_prune_;
KALDI_DISALLOW_COPY_AND_ASSIGN(MleAmSgmm2Accs);
friend class MleAmSgmm2Updater;
friend class EbwAmSgmm2Updater;
};
/** \class MleAmSgmmUpdater
* Contains the functions needed to update the SGMM parameters.
*/
class MleAmSgmm2Updater {
public:
explicit MleAmSgmm2Updater(const MleAmSgmm2Options &options)
: options_(options) {}
void Reconfigure(const MleAmSgmm2Options &options) {
options_ = options;
}
void Update(const MleAmSgmm2Accs &accs,
AmSgmm2 *model,
SgmmUpdateFlagsType flags);
private:
friend class UpdateWClass;
friend class UpdatePhoneVectorsClass;
friend class EbwEstimateAmSgmm2;
/// Compute the Q_i quantities (Eq. 64).
static void ComputeQ(const MleAmSgmm2Accs &accs,
const AmSgmm2 &model,
std::vector< SpMatrix<double> > *Q);
/// Compute the S_means quantities, minus sum: (Y_i M_i^T + M_i Y_I^T).
static void ComputeSMeans(const MleAmSgmm2Accs &accs,
const AmSgmm2 &model,
std::vector< SpMatrix<double> > *S_means);
friend class EbwAmSgmm2Updater;
MleAmSgmm2Options options_;
// Called from UpdatePhoneVectors; updates a subset of states
// (relates to multi-threading).
void UpdatePhoneVectorsInternal(const MleAmSgmm2Accs &accs,
const std::vector<SpMatrix<double> > &H,
const std::vector<Matrix<double> > &log_a,
AmSgmm2 *model,
double *auxf_impr,
int32 num_threads,
int32 thread_id) const;
double UpdatePhoneVectors(const MleAmSgmm2Accs &accs,
const std::vector<SpMatrix<double> > &H,
const std::vector<Matrix<double> > &log_a,
AmSgmm2 *model) const;
double UpdateM(const MleAmSgmm2Accs &accs,
const std::vector< SpMatrix<double> > &Q,
const Vector<double> &gamma_i,
AmSgmm2 *model);
void RenormalizeV(const MleAmSgmm2Accs &accs, AmSgmm2 *model,
const Vector<double> &gamma_i,
const std::vector<SpMatrix<double> > &H);
double UpdateN(const MleAmSgmm2Accs &accs, const Vector<double> &gamma_i,
AmSgmm2 *model);
void RenormalizeN(const MleAmSgmm2Accs &accs, const Vector<double> &gamma_i,
AmSgmm2 *model);
double UpdateVars(const MleAmSgmm2Accs &accs,
const std::vector< SpMatrix<double> > &S_means,
const Vector<double> &gamma_i,
AmSgmm2 *model);
// Update for the phonetic-subspace weight projections w_i
double UpdateW(const MleAmSgmm2Accs &accs,
const std::vector<Matrix<double> > &log_a,
const Vector<double> &gamma_i,
AmSgmm2 *model);
// Update for the speaker-subspace weight projections u_i [SSGMM]
double UpdateU(const MleAmSgmm2Accs &accs, const Vector<double> &gamma_i,
AmSgmm2 *model);
/// Called, multithreaded, inside UpdateW
static
void UpdateWGetStats(const MleAmSgmm2Accs &accs,
const AmSgmm2 &model,
const Matrix<double> &w,
const std::vector<Matrix<double> > &log_a,
Matrix<double> *F_i,
Matrix<double> *g_i,
double *tot_like,
int32 num_threads,
int32 thread_id);
double UpdateSubstateWeights(const MleAmSgmm2Accs &accs,
AmSgmm2 *model);
static void ComputeLogA(const MleAmSgmm2Accs &accs,
std::vector<Matrix<double> > *log_a); // [SSGMM]
void ComputeMPrior(AmSgmm2 *model); // TODO(arnab): Maybe make this static?
double MapUpdateM(const MleAmSgmm2Accs &accs,
const std::vector< SpMatrix<double> > &Q,
const Vector<double> &gamma_i, AmSgmm2 *model);
KALDI_DISALLOW_COPY_AND_ASSIGN(MleAmSgmm2Updater);
MleAmSgmm2Updater() {} // Prevent unconfigured updater.
};
/** \class MleSgmm2SpeakerAccs
* Class for the accumulators required to update the speaker
* vectors v_s.
* Note: if you have multiple speakers you will want to initialize
* this just once and call Clear() after you're done with each speaker,
* rather than creating a new object for each speaker, since the
* initialization function does nontrivial work.
*/
class MleSgmm2SpeakerAccs {
public:
/// Initialize the object. Error if speaker subspace not set up.
MleSgmm2SpeakerAccs(const AmSgmm2 &model,
BaseFloat rand_prune_ = 1.0e-05);
/// Clear the statistics.
void Clear();
/// Accumulate statistics. Returns per-frame log-likelihood.
BaseFloat Accumulate(const AmSgmm2 &model,
const Sgmm2PerFrameDerivedVars &frame_vars,
int32 pdf_index,
BaseFloat weight,
Sgmm2PerSpkDerivedVars *spk_vars);
/// Accumulate statistics, given posteriors. Returns total
/// count accumulated, which may differ from posteriors.Sum()
/// due to randomized pruning.
BaseFloat AccumulateFromPosteriors(const AmSgmm2 &model,
const Sgmm2PerFrameDerivedVars &frame_vars,
const Matrix<BaseFloat> &posteriors,
int32 pdf_index,
Sgmm2PerSpkDerivedVars *spk_vars);
/// Update speaker vector. If v_s was empty, will assume it started as zero
/// and will resize it to the speaker-subspace size.
void Update(const AmSgmm2 &model,
BaseFloat min_count, // e.g. 100
Vector<BaseFloat> *v_s,
BaseFloat *objf_impr_out,
BaseFloat *count_out);
private:
// Update without speaker-dependent weights (vectors u_i),
// i.e. not symmetric SGMM (SSGMM)
void UpdateNoU(Vector<BaseFloat> *v_s,
BaseFloat *objf_impr_out,
BaseFloat *count_out);
// Update for SSGMM
void UpdateWithU(const AmSgmm2 &model,
Vector<BaseFloat> *v_s,
BaseFloat *objf_impr_out,
BaseFloat *count_out);
/// Statistics for speaker adaptation (vectors), stored per-speaker.
/// Per-speaker stats for vectors, y^{(s)}. Dimension [T].
Vector<double> y_s_;
/// gamma_{i}^{(s)}. Per-speaker counts for each Gaussian. Dimension is [I]
Vector<double> gamma_s_;
/// a_i^{(s)}. For SSGMM.
Vector<double> a_s_;
/// The following variable does not change per speaker, it just
/// relates to the speaker subspace.
/// Eq. (82): H_{i}^{spk} = N_{i}^T \Sigma_{i}^{-1} N_{i}
std::vector< SpMatrix<double> > H_spk_;
/// N_i^T \Sigma_{i}^{-1}. Needed for y^{(s)}
std::vector< Matrix<double> > NtransSigmaInv_;
/// small constant to randomly prune tiny posteriors
BaseFloat rand_prune_;
};
// This class, used in multi-core implementation of the updates of the "w_i"
// quantities, was previously in estimate-am-sgmm.cc, but is being moved to the
// header so it can be used in estimate-am-sgmm-ebw.cc. It is responsible for
// computing, in parallel, the F_i and g_i quantities used in the updates of
// w_i.
class UpdateWClass: public MultiThreadable {
public:
UpdateWClass(const MleAmSgmm2Accs &accs,
const AmSgmm2 &model,
const Matrix<double> &w,
const std::vector<Matrix<double> > &log_a,
Matrix<double> *F_i,
Matrix<double> *g_i,
double *tot_like):
accs_(accs), model_(model), w_(w), log_a_(log_a),
F_i_ptr_(F_i), g_i_ptr_(g_i), tot_like_ptr_(tot_like) {
tot_like_ = 0.0;
F_i_.Resize(F_i->NumRows(), F_i->NumCols());
g_i_.Resize(g_i->NumRows(), g_i->NumCols());
}
UpdateWClass(const UpdateWClass &other) :
MultiThreadable(other),
accs_(other.accs_), model_(other.model_), w_(other.w_),
log_a_(other.log_a_), F_i_ptr_(other.F_i_ptr_), g_i_ptr_(other.g_i_ptr_),
F_i_(other.F_i_), g_i_(other.g_i_), tot_like_ptr_(other.tot_like_ptr_),
tot_like_(0.0) { }
~UpdateWClass() {
F_i_ptr_->AddMat(1.0, F_i_, kNoTrans);
g_i_ptr_->AddMat(1.0, g_i_, kNoTrans);
*tot_like_ptr_ += tot_like_;
}
inline void operator() () {
// Note: give them local copy of the sums we're computing,
// which will be propagated to the total sums in the destructor.
MleAmSgmm2Updater::UpdateWGetStats(accs_, model_, w_, log_a_,
&F_i_, &g_i_, &tot_like_,
num_threads_, thread_id_);
}
private:
const MleAmSgmm2Accs &accs_;
const AmSgmm2 &model_;
const Matrix<double> &w_;
const std::vector<Matrix<double> > &log_a_;
Matrix<double> *F_i_ptr_;
Matrix<double> *g_i_ptr_;
Matrix<double> F_i_;
Matrix<double> g_i_;
double *tot_like_ptr_;
double tot_like_;
};
} // namespace kaldi
#endif // KALDI_SGMM2_ESTIMATE_AM_SGMM2_H_