Blame view
src/sgmm2/fmllr-sgmm2.h
7.73 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
// sgmm2/fmllr-sgmm2.h // Copyright 2009-2012 Saarland University (author: Arnab Ghoshal) // Johns Hopkins University (author: Daniel Povey) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #ifndef KALDI_SGMM2_FMLLR_SGMM2_H_ #define KALDI_SGMM2_FMLLR_SGMM2_H_ #include <string> #include <vector> #include "base/kaldi-common.h" #include "sgmm2/am-sgmm2.h" #include "transform/transform-common.h" #include "util/kaldi-table.h" #include "util/kaldi-holder.h" #include "itf/options-itf.h" namespace kaldi { /** \struct Sgmm2FmllrConfig * Configuration variables needed in the estimation of FMLLR for SGMMs. */ struct Sgmm2FmllrConfig { int32 fmllr_iters; ///< Number of iterations in FMLLR estimation. int32 step_iters; ///< Iterations to find optimal FMLLR step size. /// Minimum occupancy count to estimate FMLLR using basis matrices. BaseFloat fmllr_min_count_basis; /// Minimum occupancy count to estimate FMLLR without basis matrices. BaseFloat fmllr_min_count; /// Minimum occupancy count to stop using FMLLR bases and switch to /// regular FMLLR estimation. BaseFloat fmllr_min_count_full; /// Number of basis matrices to use for FMLLR estimation. Can only *reduce* /// the number of bases present. Overridden by the 'bases_occ_scale' option. int32 num_fmllr_bases; /// Scale per-speaker count to determine number of CMLLR bases. BaseFloat bases_occ_scale; Sgmm2FmllrConfig() { fmllr_iters = 5; step_iters = 10; fmllr_min_count_basis = 100.0; fmllr_min_count = 1000.0; fmllr_min_count_full = 5000.0; num_fmllr_bases = 50; bases_occ_scale = 0.2; } void Register(OptionsItf *opts); }; inline void Sgmm2FmllrConfig::Register(OptionsItf *opts) { std::string module = "Sgmm2FmllrConfig: "; opts->Register("fmllr-iters", &fmllr_iters, module+ "Number of iterations in FMLLR estimation."); opts->Register("fmllr-step-iters", &step_iters, module+ "Number of iterations to find optimal FMLLR step size."); opts->Register("fmllr-min-count-bases", &fmllr_min_count_basis, module+ "Minimum occupancy count to estimate FMLLR using basis matrices."); opts->Register("fmllr-min-count", &fmllr_min_count, module+ "Minimum occupancy count to estimate FMLLR (without bases)."); opts->Register("fmllr-min-count-full", &fmllr_min_count_full, module+ "Minimum occupancy count to stop using basis matrices for FMLLR."); opts->Register("fmllr-num-bases", &num_fmllr_bases, module+ "Number of FMLLR basis matrices."); opts->Register("fmllr-bases-occ-scale", &bases_occ_scale, module+ "Scale per-speaker count to determine number of CMLLR bases."); } /** \class Sgmm2FmllrGlobalParams * Global adaptation parameters. */ class Sgmm2FmllrGlobalParams { public: void Init(const AmSgmm2 &sgmm, const Vector<BaseFloat> &state_occs); void Write(std::ostream &out_stream, bool binary) const; void Read(std::istream &in_stream, bool binary); bool IsEmpty() const { return (pre_xform_.NumRows() == 0 || inv_xform_.NumRows() == 0 || mean_scatter_.Dim() == 0); } bool HasBasis() const { return fmllr_bases_.size() != 0; } /// Pre-transform matrix. Dim is [D][D+1]. Matrix<BaseFloat> pre_xform_; /// Inverse of pre-transform. Dim is [D][D+1]. Matrix<BaseFloat> inv_xform_; /// Diagonal of mean-scatter matrix. Dim is [D] Vector<BaseFloat> mean_scatter_; /// \tilde{W}_b. [b][d][d], dim is [B][D][D+1]. std::vector< Matrix<BaseFloat> > fmllr_bases_; }; inline void Sgmm2FmllrGlobalParams::Init(const AmSgmm2 &sgmm, const Vector<BaseFloat> &state_occs) { sgmm.ComputeFmllrPreXform(state_occs, &pre_xform_, &inv_xform_, &mean_scatter_); } /** \class FmllrSgmm2Accs * Class for computing the accumulators needed for the maximum-likelihood * estimate of FMLLR transforms for a subspace GMM acoustic model. */ class FmllrSgmm2Accs { public: FmllrSgmm2Accs() : dim_(-1) {} ~FmllrSgmm2Accs() {} void Init(int32 dim, int32 num_gaussians); void SetZero() { stats_.SetZero(); } void Write(std::ostream &out_stream, bool binary) const; void Read(std::istream &in_stream, bool binary, bool add); /// Accumulation routine that computes the Gaussian posteriors and calls /// the AccumulateFromPosteriors function with the computed posteriors. /// The 'data' argument is not FMLLR-transformed and is needed in addition /// to the the 'frame_vars' since the latter only contains a copy of the /// transformed feature vector. BaseFloat Accumulate(const AmSgmm2 &sgmm, const VectorBase<BaseFloat> &data, const Sgmm2PerFrameDerivedVars &frame_vars, int32 state_index, BaseFloat weight, Sgmm2PerSpkDerivedVars *spk); void AccumulateFromPosteriors(const AmSgmm2 &sgmm, const Sgmm2PerSpkDerivedVars &spk, const VectorBase<BaseFloat> &data, const std::vector<int32> &gauss_select, const Matrix<BaseFloat> &posteriors, int32 state_index); void AccumulateForFmllrSubspace(const AmSgmm2 &sgmm, const Sgmm2FmllrGlobalParams &fmllr_globals, SpMatrix<double> *grad_scatter); BaseFloat FmllrObjGradient(const AmSgmm2 &sgmm, const Matrix<BaseFloat> &xform, Matrix<BaseFloat> *grad_out, Matrix<BaseFloat> *G_out) const; /// Computes the FMLLR transform from the accumulated stats, using the /// pre-transforms in fmllr_globals. Expects the transform matrix out_xform /// to be initialized to the correct size. Returns true if the transform was /// updated (i.e. had enough counts). bool Update(const AmSgmm2 &model, const Sgmm2FmllrGlobalParams &fmllr_globals, const Sgmm2FmllrConfig &opts, Matrix<BaseFloat> *out_xform, BaseFloat *frame_count, BaseFloat *auxf_improv) const; /// Accessors int32 Dim() const { return dim_; } const AffineXformStats &stats() const { return stats_; } private: AffineXformStats stats_; ///< Accumulated stats int32 dim_; ///< Dimension of feature vectors // Cannot have copy constructor and assigment operator KALDI_DISALLOW_COPY_AND_ASSIGN(FmllrSgmm2Accs); }; /// Computes the fMLLR basis matrices given the scatter of the vectorized /// gradients (eq: B.10). The result is stored in 'fmllr_globals'. /// The actual number of bases may be less than 'num_fmllr_bases' depending /// on the feature dimension and number of eigenvalues greater than 'min_eig'. void EstimateSgmm2FmllrSubspace(const SpMatrix<double> &fmllr_grad_scatter, int32 num_fmllr_bases, int32 feat_dim, Sgmm2FmllrGlobalParams *fmllr_globals, double min_eig = 0.0); } // namespace kaldi #endif // KALDI_SGMM2_FMLLR_SGMM2_H_ |