fmllr-sgmm2.h
7.73 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// sgmm2/fmllr-sgmm2.h
// Copyright 2009-2012 Saarland University (author: Arnab Ghoshal)
// Johns Hopkins University (author: Daniel Povey)
// See ../../COPYING for clarification regarding multiple authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
// WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE,
// MERCHANTABLITY OR NON-INFRINGEMENT.
// See the Apache 2 License for the specific language governing permissions and
// limitations under the License.
#ifndef KALDI_SGMM2_FMLLR_SGMM2_H_
#define KALDI_SGMM2_FMLLR_SGMM2_H_
#include <string>
#include <vector>
#include "base/kaldi-common.h"
#include "sgmm2/am-sgmm2.h"
#include "transform/transform-common.h"
#include "util/kaldi-table.h"
#include "util/kaldi-holder.h"
#include "itf/options-itf.h"
namespace kaldi {
/** \struct Sgmm2FmllrConfig
* Configuration variables needed in the estimation of FMLLR for SGMMs.
*/
struct Sgmm2FmllrConfig {
int32 fmllr_iters; ///< Number of iterations in FMLLR estimation.
int32 step_iters; ///< Iterations to find optimal FMLLR step size.
/// Minimum occupancy count to estimate FMLLR using basis matrices.
BaseFloat fmllr_min_count_basis;
/// Minimum occupancy count to estimate FMLLR without basis matrices.
BaseFloat fmllr_min_count;
/// Minimum occupancy count to stop using FMLLR bases and switch to
/// regular FMLLR estimation.
BaseFloat fmllr_min_count_full;
/// Number of basis matrices to use for FMLLR estimation. Can only *reduce*
/// the number of bases present. Overridden by the 'bases_occ_scale' option.
int32 num_fmllr_bases;
/// Scale per-speaker count to determine number of CMLLR bases.
BaseFloat bases_occ_scale;
Sgmm2FmllrConfig() {
fmllr_iters = 5;
step_iters = 10;
fmllr_min_count_basis = 100.0;
fmllr_min_count = 1000.0;
fmllr_min_count_full = 5000.0;
num_fmllr_bases = 50;
bases_occ_scale = 0.2;
}
void Register(OptionsItf *opts);
};
inline void Sgmm2FmllrConfig::Register(OptionsItf *opts) {
std::string module = "Sgmm2FmllrConfig: ";
opts->Register("fmllr-iters", &fmllr_iters, module+
"Number of iterations in FMLLR estimation.");
opts->Register("fmllr-step-iters", &step_iters, module+
"Number of iterations to find optimal FMLLR step size.");
opts->Register("fmllr-min-count-bases", &fmllr_min_count_basis, module+
"Minimum occupancy count to estimate FMLLR using basis matrices.");
opts->Register("fmllr-min-count", &fmllr_min_count, module+
"Minimum occupancy count to estimate FMLLR (without bases).");
opts->Register("fmllr-min-count-full", &fmllr_min_count_full, module+
"Minimum occupancy count to stop using basis matrices for FMLLR.");
opts->Register("fmllr-num-bases", &num_fmllr_bases, module+
"Number of FMLLR basis matrices.");
opts->Register("fmllr-bases-occ-scale", &bases_occ_scale, module+
"Scale per-speaker count to determine number of CMLLR bases.");
}
/** \class Sgmm2FmllrGlobalParams
* Global adaptation parameters.
*/
class Sgmm2FmllrGlobalParams {
public:
void Init(const AmSgmm2 &sgmm, const Vector<BaseFloat> &state_occs);
void Write(std::ostream &out_stream, bool binary) const;
void Read(std::istream &in_stream, bool binary);
bool IsEmpty() const {
return (pre_xform_.NumRows() == 0 || inv_xform_.NumRows() == 0 ||
mean_scatter_.Dim() == 0);
}
bool HasBasis() const { return fmllr_bases_.size() != 0; }
/// Pre-transform matrix. Dim is [D][D+1].
Matrix<BaseFloat> pre_xform_;
/// Inverse of pre-transform. Dim is [D][D+1].
Matrix<BaseFloat> inv_xform_;
/// Diagonal of mean-scatter matrix. Dim is [D]
Vector<BaseFloat> mean_scatter_;
/// \tilde{W}_b. [b][d][d], dim is [B][D][D+1].
std::vector< Matrix<BaseFloat> > fmllr_bases_;
};
inline void Sgmm2FmllrGlobalParams::Init(const AmSgmm2 &sgmm,
const Vector<BaseFloat> &state_occs) {
sgmm.ComputeFmllrPreXform(state_occs, &pre_xform_, &inv_xform_,
&mean_scatter_);
}
/** \class FmllrSgmm2Accs
* Class for computing the accumulators needed for the maximum-likelihood
* estimate of FMLLR transforms for a subspace GMM acoustic model.
*/
class FmllrSgmm2Accs {
public:
FmllrSgmm2Accs() : dim_(-1) {}
~FmllrSgmm2Accs() {}
void Init(int32 dim, int32 num_gaussians);
void SetZero() { stats_.SetZero(); }
void Write(std::ostream &out_stream, bool binary) const;
void Read(std::istream &in_stream, bool binary, bool add);
/// Accumulation routine that computes the Gaussian posteriors and calls
/// the AccumulateFromPosteriors function with the computed posteriors.
/// The 'data' argument is not FMLLR-transformed and is needed in addition
/// to the the 'frame_vars' since the latter only contains a copy of the
/// transformed feature vector.
BaseFloat Accumulate(const AmSgmm2 &sgmm,
const VectorBase<BaseFloat> &data,
const Sgmm2PerFrameDerivedVars &frame_vars,
int32 state_index,
BaseFloat weight,
Sgmm2PerSpkDerivedVars *spk);
void AccumulateFromPosteriors(const AmSgmm2 &sgmm,
const Sgmm2PerSpkDerivedVars &spk,
const VectorBase<BaseFloat> &data,
const std::vector<int32> &gauss_select,
const Matrix<BaseFloat> &posteriors,
int32 state_index);
void AccumulateForFmllrSubspace(const AmSgmm2 &sgmm,
const Sgmm2FmllrGlobalParams &fmllr_globals,
SpMatrix<double> *grad_scatter);
BaseFloat FmllrObjGradient(const AmSgmm2 &sgmm,
const Matrix<BaseFloat> &xform,
Matrix<BaseFloat> *grad_out,
Matrix<BaseFloat> *G_out) const;
/// Computes the FMLLR transform from the accumulated stats, using the
/// pre-transforms in fmllr_globals. Expects the transform matrix out_xform
/// to be initialized to the correct size. Returns true if the transform was
/// updated (i.e. had enough counts).
bool Update(const AmSgmm2 &model,
const Sgmm2FmllrGlobalParams &fmllr_globals,
const Sgmm2FmllrConfig &opts, Matrix<BaseFloat> *out_xform,
BaseFloat *frame_count, BaseFloat *auxf_improv) const;
/// Accessors
int32 Dim() const { return dim_; }
const AffineXformStats &stats() const { return stats_; }
private:
AffineXformStats stats_; ///< Accumulated stats
int32 dim_; ///< Dimension of feature vectors
// Cannot have copy constructor and assigment operator
KALDI_DISALLOW_COPY_AND_ASSIGN(FmllrSgmm2Accs);
};
/// Computes the fMLLR basis matrices given the scatter of the vectorized
/// gradients (eq: B.10). The result is stored in 'fmllr_globals'.
/// The actual number of bases may be less than 'num_fmllr_bases' depending
/// on the feature dimension and number of eigenvalues greater than 'min_eig'.
void EstimateSgmm2FmllrSubspace(const SpMatrix<double> &fmllr_grad_scatter,
int32 num_fmllr_bases, int32 feat_dim,
Sgmm2FmllrGlobalParams *fmllr_globals,
double min_eig = 0.0);
} // namespace kaldi
#endif // KALDI_SGMM2_FMLLR_SGMM2_H_