Blame view
src/tfrnnlmbin/lattice-lmrescore-tf-rnnlm-pruned.cc
8 KB
8dcb6dfcb first commit |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
// tfrnnlmbin/lattice-lmrescore-tf-rnnlm-pruned.cc // Copyright (C) 2017 Intellisist, Inc. (Author: Hainan Xu) // See ../../COPYING for clarification regarding multiple authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // THIS CODE IS PROVIDED *AS IS* BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED // WARRANTIES OR CONDITIONS OF TITLE, FITNESS FOR A PARTICULAR PURPOSE, // MERCHANTABLITY OR NON-INFRINGEMENT. // See the Apache 2 License for the specific language governing permissions and // limitations under the License. #include "base/kaldi-common.h" #include "fstext/fstext-lib.h" #include "lat/kaldi-lattice.h" #include "lat/lattice-functions.h" #include "lat/compose-lattice-pruned.h" #include "lm/const-arpa-lm.h" #include "util/common-utils.h" // This should come after any OpenFst includes to avoid using the wrong macros. #include "tfrnnlm/tensorflow-rnnlm.h" int main(int argc, char *argv[]) { try { using namespace kaldi; using namespace kaldi::tf_rnnlm; typedef kaldi::int32 int32; typedef kaldi::int64 int64; using fst::SymbolTable; using fst::VectorFst; using fst::StdArc; using fst::ReadFstKaldi; const char *usage = "Rescores lattice with rnnlm that is trained with TensorFlow. " "An example script for training and rescoring with the TensorFlow " "RNNLM is at egs/ami/s5/local/tfrnnlm/run_lstm_fast.sh " " " "Usage: lattice-lmrescore-tf-rnnlm-pruned [options] [unk-file] \\ " " <old-lm> <fst-wordlist> <rnnlm-wordlist> \\ " " <rnnlm-rxfilename> <lattice-rspecifier> <lattice-wspecifier> " " e.g.: lattice-lmrescore-tf-rnnlm-pruned --lm-scale=0.5 data/tensorflow_lstm/unkcounts.txt \\ " " data/test/G.fst data/lang/words.txt data/tensorflow_lstm/rnnwords.txt \\ " " data/tensorflow_lstm/rnnlm ark:in.lats ark:out.lats " " e.g.: lattice-lmrescore-tf-rnnlm-pruned --lm-scale=0.5 data/tensorflow_lstm/unkcounts.txt \\ " " data/test_fg/G.carpa data/lang/words.txt data/tensorflow_lstm/rnnwords.txt \\ " " data/tensorflow_lstm/rnnlm ark:in.lats ark:out.lats "; ParseOptions po(usage); int32 max_ngram_order = 3; BaseFloat lm_scale = 0.5; BaseFloat acoustic_scale = 0.1; bool use_carpa = false; po.Register("lm-scale", &lm_scale, "Scaling factor for <lm-to-add>; its negative " "will be applied to <lm-to-subtract>."); po.Register("acoustic-scale", &acoustic_scale, "Scaling factor for acoustic " "probabilities (e.g. 0.1 for non-chain systems); important because " "of its effect on pruning."); po.Register("max-ngram-order", &max_ngram_order, "If positive, allow RNNLM histories longer than this to be identified " "with each other for rescoring purposes (an approximation that " "saves time and reduces output lattice size)."); po.Register("use-const-arpa", &use_carpa, "If true, read the old-LM file " "as a const-arpa file as opposed to an FST file"); KaldiTfRnnlmWrapperOpts opts; ComposeLatticePrunedOptions compose_opts; opts.Register(&po); compose_opts.Register(&po); po.Read(argc, argv); if (po.NumArgs() != 7 && po.NumArgs() != 6) { po.PrintUsage(); exit(1); } std::string lm_to_subtract_rxfilename, lats_rspecifier, rnn_word_list, word_symbols_rxfilename, rnnlm_rxfilename, lats_wspecifier, unk_prob_file; if (po.NumArgs() == 6) { lm_to_subtract_rxfilename = po.GetArg(1), word_symbols_rxfilename = po.GetArg(2); rnn_word_list = po.GetArg(3); rnnlm_rxfilename = po.GetArg(4); lats_rspecifier = po.GetArg(5); lats_wspecifier = po.GetArg(6); } else { lm_to_subtract_rxfilename = po.GetArg(1), word_symbols_rxfilename = po.GetArg(2); unk_prob_file = po.GetArg(3); rnn_word_list = po.GetArg(4); rnnlm_rxfilename = po.GetArg(5); lats_rspecifier = po.GetArg(6); lats_wspecifier = po.GetArg(7); } // for G.fst fst::ScaleDeterministicOnDemandFst *lm_to_subtract_det_scale = NULL; fst::BackoffDeterministicOnDemandFst<StdArc> *lm_to_subtract_det_backoff = NULL; VectorFst<StdArc> *lm_to_subtract_fst = NULL; // for G.carpa ConstArpaLm* const_arpa = NULL; fst::DeterministicOnDemandFst<StdArc> *carpa_lm_to_subtract_fst = NULL; KALDI_LOG << "Reading old LMs..."; if (use_carpa) { const_arpa = new ConstArpaLm(); ReadKaldiObject(lm_to_subtract_rxfilename, const_arpa); carpa_lm_to_subtract_fst = new ConstArpaLmDeterministicFst(*const_arpa); lm_to_subtract_det_scale = new fst::ScaleDeterministicOnDemandFst(-lm_scale, carpa_lm_to_subtract_fst); } else { lm_to_subtract_fst = fst::ReadAndPrepareLmFst( lm_to_subtract_rxfilename); lm_to_subtract_det_backoff = new fst::BackoffDeterministicOnDemandFst<StdArc>(*lm_to_subtract_fst); lm_to_subtract_det_scale = new fst::ScaleDeterministicOnDemandFst(-lm_scale, lm_to_subtract_det_backoff); } // Reads the TF language model. KaldiTfRnnlmWrapper rnnlm(opts, rnn_word_list, word_symbols_rxfilename, unk_prob_file, rnnlm_rxfilename); // Reads and writes as compact lattice. SequentialCompactLatticeReader compact_lattice_reader(lats_rspecifier); CompactLatticeWriter compact_lattice_writer(lats_wspecifier); int32 n_done = 0, n_fail = 0; TfRnnlmDeterministicFst* lm_to_add_orig = new TfRnnlmDeterministicFst(max_ngram_order, &rnnlm); for (; !compact_lattice_reader.Done(); compact_lattice_reader.Next()) { fst::DeterministicOnDemandFst<StdArc> *lm_to_add = new fst::ScaleDeterministicOnDemandFst(lm_scale, lm_to_add_orig); std::string key = compact_lattice_reader.Key(); CompactLattice clat = compact_lattice_reader.Value(); compact_lattice_reader.FreeCurrent(); // Before composing with the LM FST, we scale the lattice weights // by the inverse of "lm_scale". We'll later scale by "lm_scale". // We do it this way so we can determinize and it will give the // right effect (taking the "best path" through the LM) regardless // of the sign of lm_scale. if (acoustic_scale != 1.0) { fst::ScaleLattice(fst::AcousticLatticeScale(acoustic_scale), &clat); } TopSortCompactLatticeIfNeeded(&clat); fst::ComposeDeterministicOnDemandFst<StdArc> combined_lms( lm_to_subtract_det_scale, lm_to_add); // Composes lattice with language model. CompactLattice composed_clat; ComposeCompactLatticePruned(compose_opts, clat, &combined_lms, &composed_clat); lm_to_add_orig->Clear(); if (composed_clat.NumStates() == 0) { // Something went wrong. A warning will already have been printed. n_fail++; } else { if (acoustic_scale != 1.0) { if (acoustic_scale == 0.0) KALDI_ERR << "Acoustic scale cannot be zero."; fst::ScaleLattice(fst::AcousticLatticeScale(1.0 / acoustic_scale), &composed_clat); } compact_lattice_writer.Write(key, composed_clat); n_done++; } delete lm_to_add; } delete lm_to_subtract_fst; delete lm_to_add_orig; delete lm_to_subtract_det_backoff; delete lm_to_subtract_det_scale; delete const_arpa; delete carpa_lm_to_subtract_fst; KALDI_LOG << "Done " << n_done << " lattices, failed for " << n_fail; return (n_done != 0 ? 0 : 1); } catch(const std::exception &e) { std::cerr << e.what(); return -1; } } |